
Introduction
This application note describes the implementation details of the Network Manager Interface (NMI).
Application note #01, 00DA0109 provides an overview of the Network Manager (NM).

The Network Managers (NM) handle the alarm data management for Senstar’s proprietary security
networks. The Network Manager is available either as a Windows Application (kit # 00FG0200) or a
Windows Service (kit # 00FG0220). There are three variants of the NM Application, one each for the
Sentrax, Voice over Ethernet (VoE), and MX networks. The Network Manager Service handles the
alarm data management for the Silver, FiberPatrol, CCC, Crossfire, Krypton, Sennet, and Starcom
networks.

The Network Managers function as data servers which collect and distribute alarm point data and
control point status for third party Security Management Systems (SMS) via the Network Manager
Interface (NMI) or generic text, or legacy Starcom protocol (contact Senstar Customer Service for
Starcom protocol details). The third party organization is responsible for writing the software, which
establishes communication to the Network Manager and implements the NMI.

Software developers have 2 choices when implementing the NMI:
• establish the TCP/IP communication and process raw NMI messages;
OR
• use an MFC DLL, which provides a higher level integration to the NMI TCP/IP messages.

Both methods are supported by the Network Manager software, to provide developers greater
flexibility when interfacing to the NM products. The Network Manager Interface Software Development
Kit (SDK) includes the files necessary for developing an interface. It also demonstrates the two
methods through sample programs, written in C++ for Windows MFC framework. The programs serve
as examples and test applications, and all source code is included.

If a developer is using raw NMI messages and redundant Network Managers, the application can
connect to only the active NM. Therefore, when trying to connect to redundant Network Managers
initially, or after losing the connection, you must hunt between the two specified IP addresses for the
active NM.

Note This document refers to both the Network Manager Application and the
Network Manager Service as the Network Manager unless describing a
specific feature or function which pertains only to one of them.

Network Manager
June 11, 2024

00DA0209-001, Rev AH

Network Manager Interface

page 2 00DA0209-001, Rev AG

Network Manager Simulators
There are two Network Manager Simulators, one for the Network Manager Application (NMSimul) and
one for the Network Manager Service (NMS Simul). The Network Manager Simulator is used in place
of a Network Manager to simulate the operation of a Network Manager with a connected network of
security devices. Use a simulator to test system databases before installing and connecting the
network devices. Developers should also use a simulator to test and verify the interfaces to third party
display applications.

Network Manager SDK installation
Use the Network Manager installation program (Setup.exe) to install the NMI development
components, and the sample programs that demonstrate its use.

During the initial installation:

On the Network Manager Installshield Wizard dialog, check the boxes beside the components that you
want to install.

Or to modify an existing installation:

Select Modify, and then select the appropriate components from the Network Manager Interface tree
structure.

This selection creates a folder C:\Senstar\Network Manager\SDK, which contains the folders and files
necessary for a developer to use the Network Manager Interface. Examples are included with the
installation to demonstrate the NMI usage, and to test the Network Manager and connected
equipment.

IP address configuration
To prevent unauthorized access, you must configure the Network Manager program with the IP
addresses of all computers with which it will communicate. A Network Manager will not allow
connections from any computer that is not on its registered address list.

Note Refer to the online help for information about using the Network Manager
Simulator.

Note Consult the Network Manager’s online documentation for additional
information.

00DA0209-001, Rev AH page 3

Network Manager Interface TCP/IP
To write an interface that establishes its own TCP/IP connection, and then processes raw NMI
messages, requires the NMTcpip.h header file. The header file includes message type definitions,
Silver definitions, FiberPatrol definitions, CCC definitions, Crossfire definitions, Sennet definitions,
Sentrax definitions, VoE definitions, MX definitions, Starcom definitions, and other sensor specific
definitions. The NMTcpip.h file is included as part of the Network Manager Interface Development
Components installation.

The connection is a client-server asynchronous relationship with the NM being the server. The client
attaches to port 849 + the NM’s Unit ID (1-10) at the NM Computer’s IP address. If the client’s IP
address is in the Network Manager’s list, and is not already in use, the connection is accepted.

Conventions:
• Bytes are in hexadecimal.
• Words and other multibyte types are stored least significant byte first.
• Bit 0 is the least significant bit in a byte or word.

All messages have a common format for the first 5 bytes:

• Bytes 1 & 2 are constant values.
• Bytes 3 & 4 are the length of the message from the message type to the end of the data.
• Byte 5 is the message type.
• Byte 6 is the start of the data, if required.

NMI message summary
The client sends one of the following message types to the NM. The NM typically responds with the
same message type. The NM can also send unsolicited messages. These are noted below.

NM_MT_NULL

This message has no data bytes, requires no response, and should be ignored by the recipient. The
Windows O/S may be slow to report a TCP/IP connection loss unless a message is being sent. The
NM periodically sends this message to check the status of a connection to an SMS client. An SMS
client may use this message for the same purpose.

Message format:

• Byte 5, the message type, is 00.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 01 XX XX

Note See Recommended NMI Message Use Summary on page 59 for a list of
commonly used messages.

Byte # 1 2 3 4 5

Data E0 31 01 00 00

page 4 00DA0209-001, Rev AG

NM_MT_LOOPBACK

Two bytes of data are loaded by the client. The inverted values are returned. The client can use this to
verify the TCP/IP connection as Windows can be slow to report TCP/IP link failures.

Client query:

• Byte 5, the message type, is 01.
• Bytes 6 & 7 are user defined and each may be any value between 00-FF.

Server response:

• Bytes 6 & 7 are the inverted values of the user’s input.

NM_MT_VERSION

This message is used to retrieve the software version of the Network Manager Service.

Client query:

• Byte 5, the message type, is 24.

Server response:

• Byte 5, the message type, is 24.
• Bytes 6, 7 & 8 are the 3 digits of the software version (X.YZ).
• Byte 9 is the software build number.

In this example, the software version is 2.32 and the software build number is 6.

NM_MT_DEVC_TYPE

This message is used to request the identity of a specific device, indicated by its address, or of all
devices.

Client query:

• Byte 5, the message type, is 02.
• Bytes 6 & 7 are the device address. This shows device 1.

TIP Use the NM_MT_LOOPBACK message as a client initiated heartbeat.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 01 AA FF

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 01 55 00

Byte # 1 2 3 4 5

Data E0 31 01 00 18

Byte # 1 2 3 4 5 6 7 8 9

Data E0 31 05 00 18 02 03 02 06

TIP Use the NM_D_DEVC_TYPE structure available in the NMTcpip.h header to
simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 02 01 00

00DA0209-001, Rev AH page 5

Server response:

The server sends this message in response to the client query or unsolicited when a new device is
detected.

• Byte 5, the message type, is 02.
• Bytes 6 & 7 are the device address. An address of 0 is the Network Controller.
• Bytes 8 & 9 are the device type.
• Bytes 10 & 11 are the total number of diagnostic alarms (3).
• Bytes 12 & 13 are the total number of alarms (256).
• Bytes 14 & 15 are the total number of control points (256).

If the device address was -1 (FF FF) in the query, each device’s data would be appended to this
message and the message length would increase by 10 bytes per device.

NM_MT_DB_VERSION

This message is used to retrieve the database version of a device. Database versions are currently
supported for Silver based devices.

Client query:

• Byte 5, the message type, is 30.
• Bytes 6 & 7 are the device address. This shows device 1.

Server response:

The server sends this message in response to the client query, or unsolicited, when a device database
change is detected, and any point status changes have been retrieved from the device.

• Byte 5, the message type, is 30.
• Bytes 6 & 7 are the device address. This shows device 1.
• Bytes 8 & 9 are the database version. This shows database version 266.

A database version of 0 indicates a device factory default database.

A database version of FFFF hex indicates that a database version is not applicable for the device
(i.e. Database changes not reported by the device or detectable by NMS).

NM_MT_COMM_STAT

This message is used to retrieve the communications status for a device, or for all devices.

Byte # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data E0 31 0B 00 02 01 00 01 01 03 00 00 01 00 01

Byte # 1 2 3 4 5 6 7

Data E0 31 01 00 1E 01 00

Note Database version may change and in-use statuses may not be impacted.

Byte # 1 2 3 4 5 6 7 8 9

Data E0 31 01 00 1E 01 00 0A 01

TIP Use the NM_D_COMM_STAT structure available in the NMTcpip.h header
to simplify parsing the response message.

page 6 00DA0209-001, Rev AG

Client query:

• Byte 5, the message type, is 03.
• Bytes 6 & 7 are the device address.

Server response:

The server sends this message in response to the client query or unsolicited upon a change in
communication status.

• Byte 5, the message type, is 03.
• Bytes 6 & 7 are the device address.
• Byte 8 indicates if the device is connected (True 1, False 0).
• Byte 9 is the communication status (bit 0: Side A Fault, bit 1: Side B Fault).

If the device address was -1 (FF FF) in the query, each device’s data would be appended to this
message and the message length would increase by 4 bytes per device.

NM_MT_DIAG_ALARM

The server sends this message unsolicited when a diagnostic alarm changes state.

Server Response:

• Byte 5, the message type, is 04.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the point number.
• Byte 10 is the new state for the diagnostic point. Active is 1 and Inactive is 0.

NM_MT_DIAG_ALARMS

This message is used to retrieve diagnostic alarm information from a device.

Client query:

• Byte 5, the message type, is 05.
• Bytes 6 & 7 are the device address.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 03 01 00

Byte # 1 2 3 4 5 6 7 8 9

Data E0 31 05 00 03 01 00 01 02

TIP Use the NM_D_DIAG_ALARM structure available in the NMTcpip.h header
to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9 10

Data E0 31 06 00 04 03 00 01 00 01

TIP Use the NM_D_DIAG_ALARMS structure available in the NMTcpip.h
header to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 05 01 00

00DA0209-001, Rev AH page 7

Server Response:

• Byte 5, the message type, is 05.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the number of diagnostic alarms defined for the device.
• Bytes 10 to the number required; there are enough bytes to contain 1 status bit for each diagnostic

alarm that has been defined.

NM_MT_SENSOR_ALARM

This message is used to retrieve the status of a sensor alarm.

Client query:

• Byte 5, the message type, is 06.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the sensor alarm number.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor alarm changes state.

• Byte 5, the message type, is 06.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the sensor alarm number.
• Byte 10 is the status - bit 0 is alarm and bit 1 is tamper.
• Bytes 11 & 12 are the number of alarm location structures that follow.

Location Structure

Bytes 13 to the number required are alarm location information. This applies only for sensors that
provide target locating information, such as OmniTrax, FlexZone-20 / -60, the FiberPatrol Sensor Unit
(SU) and the redundant FiberPatrol Sensor Unit (RSU). Location information is sent for each location
that changed state and for all active locations.

For OmniTrax & FlexZone-20 / -60

Byte # 1 2 3 4 5 6 7 8 9 10

Data E0 31 06 00 05 01 00 08 00 02

TIP Use the NM_D_SENSOR_ALARM structure available in the NMTcpip.h
header to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9

Data E0 31 05 00 06 01 00 05 00

Byte # 1 2 3 4 5 6 7 8 9 10 11 12

Data E0 31 08 00 06 01 00 05 01 01 00 00

TIP Use the NM_AG_OTRX_LOCN structure available in the NMTcpip.h header
to simplify parsing the OmniTrax alarm location information.

TIP Use the NM_AG_FLXZN_LOCN structure available in the NMTcpip.h
header to simplify parsing the FlexZone alarm location information.

Byte # 13 14

Data 0A C0

page 8 00DA0209-001, Rev AG

• Bytes 13 & 14, Bits 0-13 are the distance from the processor along the cable, in meters.
• Bit 14 indicates the side, Side A is 0 and Side B is 1.
• Bit 15 indicates if the location is active (1) or has just turned inactive (0).

This example indicates an active location on Side B, 10 m from the processor.

For FiberPatrol SU & RSU

There are two levels of alarm location details provided depending on whether “Enable Alarm
Classification” is checked on the NMS Front Panel’s SMS TCP/IP Configuration tab.

• Byte 13, Bit 0 indicates if the location is active (1) or has just turned inactive (0). Bit 1 indicates if
location is for Alarm (0) or Tamper (1) condition. For FiberPatrol, the Tamper condition is used to
report that a Fiber Cut has occurred in the zone.

• Bytes 14-17 are a float value containing the distance of the target along the fiber. The units are
meters or feet depending on the FiberPatrol configuration setting.

• Bytes 18-21 are a float value giving the latitude of the target.
• Bytes 22-25 are a float value giving the longitude of the target.
• Bytes 26-29 are a float value giving the altitude of the target.

Values for latitude, longitude and altitude may be 0 if the value is not available from FiberPatrol.

This example indicates an active location at 543 meters (or feet) at latitude 45.317936, longitude
-75.997354, altitude 100.

The following additional bytes are provided if “Enable Alarm Classification” is checked:

• Byte 30 is a numeric value for the Alarm Classification code. (Contact Senstar FiberPatrol Product
Management for the current list of Alarm Classification codes.)

• Byte 31 is an unsigned value containing the magnitude of the alarm.
• Byte 32 is a signed value containing the speed and direction the target is moving. The units are

kph or mph depending on the FiberPatrol configuration setting.
• Bytes 33-36 are reserved for future expansion.

The way that ranging sensors report alarms is configurable on the SMS TCP/IP configuration tab of the
NMS Front Panel via the Enable Location Reporting and Enable Location Tracking checkboxes:

Example 1:
• Enable Location Reporting is not checked. Enable Location Tracking is not applicable.

(i.e., report as non-ranging sensor).
• No location information is included in the alarm reports.
• An alarm report is sent at the initial alarm detection and when the alarm ends.

TIP Use the NM_FP_SU_LOCN or NM_FP_SU_LOCN2 structure available in
the NMTcpip.h header to simplify parsing the FiberPatrol SU alarm location
information.

Byte # 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Data 01 00 C0 07 44 91 45 35 42 A5 FE 97 C2 00 00 C8 42

TIP Select (check) the checkbox on the NMS configuration to enable reporting of
the cut location. This does not affect the tamper alarm reporting.

Byte # 30 31 32 33 34 35 36

Data 1E 37 19 00 00 00 00

00DA0209-001, Rev AH page 9

Example:

Example 2:
• Enable Location Reporting is checked. Enable Location Tracking is not checked.

• Location information is included in the initial alarm report.
• An alarm report is sent at the initial alarm detection and when the alarm ends.

Example: Target crossing at 524 meters (Alarm Hold time defined).

Example 3:
• Enable Location Reporting is checked. Enable Location Tracking is checked.

• Location information is included in the alarm reports.
• An alarm report is sent at the initial alarm detection, when the location status changes, and

when the alarm ends.

Example: Targets Crossing at 524 and 550 meters (Alarm Hold time defined).

NM_MT_SENSOR_ALARMS

The client uses this message to query a device for sensor alarms.

Client query:

• Byte 5, the message type, is 07.
• Bytes 6 & 7 are the device address.

Server response:

• Byte 5, the message type, is 07.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the number of sensor alarm points.
• Byte 10 to the number required; enough bytes to contain 2 bits for each sensor alarm point; bit 0:

alarm, bit 1: tamper.

Device Addr. Alarm # Status # Locations
5 2 0x1 0
5 2 0x0 0

Device Addr. Alarm # Status # Locations Location
Active Position

5 2 0x1 1 1 524
5 2 0x0 0

Device Addr. Alarm # Status # Locations Location Location
Active Postion Active Position

5 2 0x1 1 1 524
5 2 0x1 2 1 524 1 550
5 2 0x1 2 1 550 0 524
5 2 0x1 1 0 550
5 2 0x0 0

TIP Use the NM_D_SENSOR_ALARMS structure available in the NMTcpip.h
header to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 07 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 07 00 07 03 00 06 00 AA 01

page 10 00DA0209-001, Rev AG

In this example, there are 6 alarms, therefore, 12 bits are required. Sensor alarm points 1-4 are in
tamper; sensor alarm point 5 is in alarm.

NM_MT_FILTER_ALARM

This message is used to retrieve the status of a sensor alarm filtered by the point’s shunt status.

Client query:

• Byte 5, the message type, is 16.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the sensor alarm number.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor alarm’s filtered state changes.

• Byte 5, the message type, is 16.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the sensor alarm number.
• Byte 10 is the status; bit 0: alarm and bit 1: tamper.
• Bytes 11 & 12 are the number of alarm location structures that follow

(See NM_MT_SENSOR_ALARM for location structure description.)

This example indicates an alarm on sensor point 5 of device 1.

NM_MT_FILTER_ALARMS

The client uses this message to query a device for sensor alarms filtered by the shunt states.

Client query:

• Byte 5, the message type, is 17.
• Bytes 6 & 7 are the device address.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor alarm’s filtered state changes.

• Byte 5, the message type, is 17.
• Bytes 6 & 7 are the device address.

TIP Use the NM_D_FILTER_ALARM structure available in the NMTcpip.h
header to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9

Data E0 31 05 00 10 01 00 05 00

Byte # 1 2 3 4 5 6 7 8 9 10 11 12

Data E0 31 08 00 10 01 00 05 00 01 00 00

TIP Use the NM_D_FILTER_ALARMS structure available in the NMTcpip.h
header to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 11 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 07 00 11 01 00 06 00 55 02

00DA0209-001, Rev AH page 11

• Bytes 8 & 9 are the number of sensor alarm points.
• Byte 10 to the number required; enough bytes to contain 2 bits each for each sensor alarm point;

bit 0: alarm and bit 1: tamper.

In this example, there are 6 alarms, therefore, 12 bits are required. Sensor points
1 - 4 are in alarm; sensor point 5 is in tamper.

NM_MT_SHUNT

The client sends this message to change the shunt state for a sensor point’s alarm and tamper states.
Shunting blocks the reporting of the state in the NM_MT_FILTER_ALARM message.

The server will respond with a NM_MT_FILTER_ALARM message if the shunt state is changed.

Client request:

• Byte 5, the message type, is 14.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the sensor alarm number.
• Byte 10 is a mask of which shunt bits to change; bit 0: alarm and bit 1: tamper.
• Byte 11 is the shunt states to set (1 = shunted); bit 0: alarm and bit 1: tamper.

This example clears shunting the alarm state of sensor point 5 on device 1.

NM_MT_SHUNTS

The client uses this message to query or set the shunt status of all the sensor points on a device.

The server sends this message in response to a query. The server will respond with a
NM_MT_FILTER_ALARMS message if the shunt state of at least one point is changed.

Client query:

• Byte 5, the message type, is 15.
• Bytes 6 & 7 are the device address.

Client request/Server response:

• Byte 5, the message type, is 15.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the number of sensor alarm points.
• Byte 10 to the number required; enough bytes to contain 2 bits each for each sensor point; bit 0:

alarm and bit 1: tamper.

TIP Use the NM_D_SHUNT structure available in the NMTcpip.h header to
simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 07 00 0E 01 00 05 00 01 00

TIP Use the NM_D_SHUNTS structure available in the NMTcpip.h header to
simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 0F 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 07 00 0F 01 00 06 00 55 03

page 12 00DA0209-001, Rev AG

In this example, there are 6 sensor points, therefore, 12 bits are required. Sensor points 1 - 4 alarm
condition is shunted; sensor point 5 alarm and tamper conditions are shunted.

NM_MT_PRE_ALARMS

The client sends this message to query a device for sensor pre-alarms. This message is supported
only by the NMS, and only when enabled (see NMS Front Panel > Configure dialog > SMS tab >
TCP/IP tab to enable). Pre-alarms are currently supported for Silver based FlexZone, FiberPatrol SU,
and redundant FiberPatrol SU, zone alarms.

Client query:

• Byte 5, the message type, is 21.
• Bytes 6 & 7 are the device address.

Server response/unsolicited message:

The server sends this message unsolicited when a sensor pre-alarm changes state.

• Byte 5, the message type, is 21.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the number of sensor alarm points.
• Byte 10 to the number required; enough bytes to contain 1 bit for each sensor alarm point; a 1 in a

bit indicates the corresponding point is in pre-alarm.

In this example, there are 8 alarms. Therefore, 8 bits (1 byte) are required. Sensor alarm points 4 & 6
are in pre-alarm.

NM_MT_CONTROL

The client sends this message to change the state of an output point.

The server sends this message when a device reports a change of output state.

Client request:

• Byte 5, the message type, is 08.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the point number.
• Byte 10 is the new state for the point. Active is 1; Inactive is 0.

Server response:

TIP Use the NM_D_PRE_ALARMS structure available in the NMTcpip.h header
to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 15 01 00

Byte # 1 2 3 4 5 6 7 8 9 10

Data E0 31 06 00 15 01 00 08 00 28

TIP Use the NM_D_CONTROL structure available in the NMTcpip.h header to
simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9 10

Data E0 31 06 00 08 03 00 01 00 01

Byte # 1 2 3 4 5 6 7 8 9 10

Data E0 31 06 00 08 03 00 01 00 01

00DA0209-001, Rev AH page 13

The format of the server message is identical to the client message.

NM_MT_CONTROLS

The client uses this message to query or set the state of the output points of a device.

The server sends this message in response to a client query.

Client query:

• Byte 5, the message type, is 09.
• Bytes 6 & 7 are the device address.

Client request/Server Response:

• Byte 5, the message type, is 09.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the number of control points.
• Bytes 10 to the end are enough bytes to contain 1 status bit for each control point. The status

points are packed starting with the least significant bit of the first byte.

In this example, there are 12 control points. The 2 bytes required to contain the data indicate that
control points 1, 2 and 12 are active. The message length indicates the length from the message type
to the end of the data bytes.

NM_MT_STANDBY

The client uses this message to force a redundant NM into standby mode. This message has no effect
on a redundant NM when the alternate NM is not available to go online, or on a non-redundant NM.

Client request:

• Byte 5, the message type, is 10.

Server Response:

None, NM goes off-line, Client must make the connection to the alternate NM.

NM_MT_MATE_STAT

In a redundant configuration, the client uses this message to query the state of the mate NM (the
standby NM).

Client request:

• Byte 5, the message type, is 11.

TIP Use the NM_D_CONTROLS structure available in the NMTcpip.h header to
simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 09 03 00

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 07 00 09 03 00 0C 00 03 04

Byte # 1 2 3 4 5

Data E0 31 01 00 0A

Byte # 1 2 3 4 5

Data E0 31 01 00 0B

page 14 00DA0209-001, Rev AG

Server Response:

The server sends this message in response to the client query, or unsolicited upon a change in
communication status.
• Byte 5, the message type, is 11.
• Byte 6 is the connection status - 0 = unconnected, 1 = connected.

NM_MT_DESC

This message is used to query the Network Manager’s description for a Device or Comm/Diagnostic/
Sensor/Control Point.

Client request:

• Byte 5, the message type, is 18.
• Bytes 6 & 7 are the device address (n/a for Network descriptions).
• Bytes 8 & 9 are the point number (n/a for Device and Network descriptions).
• Byte 10 is the description type requested (Bits 0-3: 0-Device, 1-Comm Point, 2-Diagnostic Point,

3-Sensor Point, 4-Control Point, 5-Summary Point, 6-Network). Set bit 4 to retrieve a user-defined
description if available. Currently applicable for Silver ALE, 16I/160, and UltraLink I/O Sensor and
Control points, Silver Audio MUX Control points, FiberPatrol Sensor points, Krypton Device
description.

Server response:

• Byte 5, the message type, is 18.
• Bytes 6 & 7 are the device address (n/a for Network descriptions).
• Bytes 8 & 9 are the point number (n/a for Device and Network descriptions).
• Byte 10 is the description type requested (Bits 0-3: 0-Device, 1-Comm Point, 2-Diagnostic Point,

3-Sensor Point, 4-Control Point, 5-Summary Point, 6-Network). Bit 4 set if this is a user-defined
description.

• Byte 11 to the number required is a null terminated string containing the description (string is in
little endian Unicode).

NM_MT_DEVC_SMRY

This message is used to retrieve a summary of the communication and diagnostic status for a device.

Client query:

Byte # 1 2 3 4 5 6

Data E0 31 02 00 0B 01

TIP Use the NM_D_DESC structure available in the NMTcpip.h header to
simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9 10

Data E0 31 06 00 08 03 00 01 00 01

Byte # 1 2 3 4 5 6 7 8 9 10 11-n

Data E0 31 06 00 08 03 00 01 00 01 01

TIP Use the NM_D_DEVC_SMRY structure available in the NMTcpip.h header
to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 13 01 00

00DA0209-001, Rev AH page 15

• Byte 5, the message type, is 19
• Bytes 6 & 7 are the device address

Server response:

The server sends this message in response to the client query or unsolicited upon a change in status.

• Byte 5, the message type, is 19
• Bytes 6 & 7 are the device address
• Byte 8 is the device status summary

• Bit 0: Comm. fail active or mismatch between configured and connected device type
• Bit 1: 1 or more comm. side faults active
• Bit 2: 1 or more critical diagnostic alarms active
• Bit 3: 1 or more warning diagnostic alarms active
• Bit 4: Enclosure tamper alarm active

NM_MT_SENSOR_TRBL

Client query:

The client uses this message to query a device for those sensor alarms whose alarm reporting
capability might be compromised due to active Comm. fail, Device mismatch or Diagnostic alarms.

• Byte 5, the message type, is 20
• Bytes 6 & 7 are the device address

Server response:

The server sends this message in response to the client query or unsolicited upon a change in status.

• Byte 5, the message type, is 20
• Bytes 6 & 7 are the device address
• Byte 8 & 9 are the number of sensor alarm points
• Byte 10 to the number required; enough bytes to contain 1 bit for each sensor alarm point; A 1 in a

bit indicates the corresponding point’s alarm reporting capability may be compromised.

In this example there are 10 alarms, therefore 10 bits (2 bytes) are required. Sensor alarm points 4 & 5
are in trouble and as a result may not report alarms.

NM_MT_SENSOR_INUSE

The client uses this message to query a device for the optional sensor points available for reporting
(in-use) and the alarm states supported for each point. Examples of optional points include points from
ranging sensor zones that may be configured and points from optional auxiliary input cards.

Byte # 1 2 3 4 5 6 7 8

Data E0 31 04 00 13 01 00 18

TIP Use the NM_D_SENSOR_TRBL structure available in the NMTcpip.h
header to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 14 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 05 00 20 01 00 0A 00 18 00

page 16 00DA0209-001, Rev AG

Client query:

• Byte 5, the message type, is 22.
• Bytes 6 & 7 are the device address.

Server response:

• Byte 5, the message type, is 22.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the number of sensor alarm points.
• Byte 10 to the number required; enough bytes to contain 4 bits for each sensor alarm point; bit 0:

alarm state supported, bit 1: tamper state supported, bit 2: pre-alarm state supported, bit 3: in-use.

In this example, there are 6 alarms; therefore, 24 bits are required. Sensor alarm points 1-2 are in-use
and support alarm and tamper states; sensor alarm points 3-5 are in-use and support only the alarm
state; point 6 is not in-use (if it was, it would support only the alarm state).

NM_MT_SMRY_INUSE

The client uses this message to query a device for the diagnostic summary points that are in-use.

Client query:

• Byte 5, the message type, is 23.
• Bytes 6 & 7 are the device address.

Server response:

• Byte 5, the message type, is 22.
• Bytes 6 & 7 are the device address.
• Byte 8 contains a bit for each diagnostic summary point in-use. Bit 0: Comm Fail/Mismatch, bit 1:

Comm Side Fault, bit 2: Critical Diagnostic, bit 3: Warning Diagnostic, bit 4: Enclosure Tamper.

NM_MT_CONTROL_INUSE

The client uses this message to query a device for the optional control points available (in-use).
Examples of optional points include controls on expansion cards.

Client query:

• Byte 5, the message type, is 25.
• Bytes 6 & 7 are the device address.

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 16 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11 12

Data E0 31 08 00 16 01 00 06 00 BB 99 19

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 17 01 00

Byte # 1 2 3 4 5 6 7 8

Data E0 31 08 00 17 01 00 1F

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 19 01 00

00DA0209-001, Rev AH page 17

Server response:

• Byte 5, the message type, is 25.
• Bytes 6 & 7 are the device address.
• Bytes 8 & 9 are the number of control points.
• Byte 10 to the number required; enough bytes to contain 1 bit for each control point indicating that

the control point is in-use.

In this example, there are 14 controls; therefore, 2 bytes are required. Control points 1-10 are available
for use; points 11-14 are not available.

NM_MT_LRANGE_ALARMS

The client uses this message to query a device for the linear range coverage of the device’s alarm
points.

Client query:

• Byte 5, the message type, is 26
• Bytes 6 & 7 are the device address. This shows device 1.

Server response:

• Byte 5, the message type, is 26
• Bytes 6 & 7 are the device address. This shows device 1.
• Bytes 8 & 9 are the number of point range structures that follow. A value of -1 indicates a non-

ranging sensor. A value of 0 indicates the NM has no range information for a ranging sensor. This
may be because the NM has not yet retrieved the information or because the sensor does not
have any ranging alarm points configured. This shows 1 range structures follow.

Range Structure:

Bytes 10 to the number required are alarm point range information structure. The structure consists of
the alarm point number, start and end points of the linear distance the alarm represents, and if
applicable, on which side of the device the range exists. An Alarm point’s coverage may span the
sides of a device in which case 2 range structures will be reported, one for each side. The start and
end point locations are dimensionless in the message, they may be interpreted as meters, feet or
heads depending on the sensor type.

• Bytes 10-11, the alarm point number. This shows 11.
• Byte 12, the side of the device the range is on. (0 = Side A, 1 = Side B, 0xFF = not applicable) This

shows side A.

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 07 00 19 01 00 0E 00 FF 03

TIP Use the NM_D_LRANGE_ALARMS and NM_D_LRANGE_POINT structure
available in the NMTcpip.h header to simplify parsing the response
message.

Byte # 1 2 3 4 5 6 7
Data E0 31 03 00 1A 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data E0 31 03 00 1A 01 00 01 00 0B 00 00 4B 00 00 00 04 01 00 00

Byte # 10 11 12 13 14 15 16 17 18 19 20
Data 0B 00 00 4B 00 00 00 04 01 00 00

page 18 00DA0209-001, Rev AG

• Bytes 13-16, start of the range. This shows 75.
• Bytes 17-20, end of the range. This shows 260.

NM_MT_GPS_PATH_ALARMS

The client uses this message to query a device for the GPS Path covered by the device’s alarm points.

Client query:

• Byte 5, the message type, is 29.
• Bytes 6 & 7 are the device address. This shows device 1.

Server response:

The NMS will generate a separate message for each alarm point ith a defined GPS Path.

• Byte 5, the message type, is 29.
• Bytes 6 & 7 are the device address. This shows device 1.
• Bytes 8 & 9 are the alarm point number. This shows alarm point 3.
• Bytes 10 & 11 are the number of path co-ordinate structures that follow. A value of -1 indicates a

non- ranging sensor or a ranging sensor that doesn’t support GPS. A value of 0 indicates the NM
has no GPS path information for a ranging sensor. This may be because the NM has not yet
retrieved the information or because the sensor does not have any GPS information configured.
When a path is available, at a minimum, there will be 2 structures representing the start and end of
the path. This shows 2 co-ordinate structures follow.

Co-ordinate Structure:

Bytes 12 to the number required are alarm point path co-ordinate information structures. The structure
consists of the latitude and longitude in decimal degrees and the altitude. The altitude is dimensionless
in the message, it may be interpreted as meters or feet depending on the sensor type.

• Bytes 12-15 are a float value giving the latitude of the co-ordinate.
• Bytes 16-19 are a float value giving the longitude of the co-ordinate.
• Bytes 20-23 are a float value giving the altitude of the co-ordinate.

Values for altitude may be 0 if the sensor does not provide an altitude.

This example indicates a start point at latitude -26.246231, longitude 28.211290.

TIP TIP Use the NM_D_GPS_PATH_ALARM and NM_D_GPS_COORD structures
available in the NMTcpip.h header to simplify parsing the response
message.

Byte # 1 2 3 4 5 6 7
Data E0 31 03 00 1D 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 1F 00 1D 01 00 03 00 02 00

Byte # 12 13 14 15 16 17 18 19 20 21 22 23

Data 48 F8 D1 C1 B9 B0 E1 41 00 00 00 00

Byte # 24 25 26 27 28 29 30 31 32 33 34 35

Data 48 F8 D1 C1 B9 B0 E1 41 00 00 00 00

Byte # 12 13 14 15 16 17 18 19 20 21 22 23

Data 48 F8 D1 C1 B9 B0 E1 41 00 00 00 00

00DA0209-001, Rev AH page 19

NM_MT_SET_CONFIG

The client sends this message to change to a temporary config for a sensor.

kooClient request:

• Byte 5, the message type, is 0X20.
• Byte 6 the state is on.
• Bytes 7 & 8 the device address is 4.
• Byte 10 the hours value is 8.
• Byte 11 the zone value is 2

The server sends this message in response to a client query.

Server Response:

VoE NM only
NM_MT_AUDIO_FOLDER

This message is used to set and retrieve the folder used to store audio recordings. (The folder
pathname is specified in UNC syntax as a NULL terminated, little endian Unicode string.)

Client query:

• Byte 5, the message type is 12.
• Bytes 6 & 7 are the audio channel.

Client command/server response:

• Byte 5, the message type is 12.
• Bytes 6 & 7 are the audio channel.
• Bytes 8 to the number required are the folder pathname.

In this example, Audio channel 1 stores it’s audio recordings in \\SRV\C\Audio.

TIP Use the NM_D_CONFIGSET structure available in the TCPIP.h header to
simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 06 00 20 01 04 00 01 08 02

Byte # 1 2 3 4 5 6 7 8 9 10 11

Data E0 31 06 00 20 01 04 00 01 08 02

Byte # 1 2 3 4 5 6 7

Data E0 31 03 00 0C 01 00

Byte # 1 2 3 4 5 6 7 8 9 10 11 12 13

Data E0 31 1F 00 0C 01 00 5C 00 5C 00 53 00

Byte # 14 15 16 17 18 19 20 21 22 23 24 25 26

Data 52 00 56 00 5C 00 43 00 5C 00 41 00 75

Byte # 27 28 29 30 31 32 33 34 35

Data 00 64 00 69 00 6F 00 00 00

page 20 00DA0209-001, Rev AG

NM_MT_AUDIO_EVENT

The server sends this message unsolicited when an audio recording ends. All strings are NULL
terminated, little endian Unicode strings.

• Byte 5, the message type, is 13.
• Bytes 6 & 7 are the audio channel.
• Bytes 8 & 9, length of recording file pathname in wide characters (WCHAR) including terminating

NULL.
• Bytes 10 & 11, length of recording description in wide characters (WCHAR) including terminating

NULL.
• Byte 12 to N, recording file pathname.
• Byte N+1 to number required, recording description.

The recording filename is based on the time the recording started and has the format “Ch# C# N#
start_time.wav” for Intercom channels and
“Ch# C# PA start_time.wav” for Public Address channels.

The recording description has the format
“Ch_desc, Intercom, Ctrl_Id, Target_Id,” for Intercom channels and
“Ch_desc, PA, Ctrl_Id, start_time-end_time” for Public Address channels.

 The start_time & end_time is specified in the format “YYYYMMDD_hhmmss”.

Where:

NMI DLL
The NMI DLL was written in Visual Studio C++ with MFC. To include the DLL in your software, four
files are required:
• NMTcpip.h contains message type definitions, Silver definitions, CCC definitions, Crossfire

TIP Use the NM_D_AUDIO_EVENT structure available in the NMTcpip.h header
to simplify parsing the response message.

Byte # 1 2 3 4 5 6 7 8 9 10 11 ...

Data E0 31 ?? ?? 0D 01 00 ?? ?? ?? ?? ...

Ch# Identifies the channel (e.g., Ch1 is Channel 1)

C# Identifies the Control Node (e.g., C4 is Control Node 4)

N# Identifies the Target Node (e.g., N5 is Target Node 5)

Ch_desc Label assigned to audio channel in VoNM configuration dialog

Ctrl_id Identification label assigned to Control node on UCM IPCC Config tab

Target_id Identification label assigned to Target node on UCM IPCC Config tab

YYYY 4 digit year

MM 2 digit month

DD 2 digit day

hh 2 digit hour in 24 hour format

mm 2 digit minute

ss 2 digit second

00DA0209-001, Rev AH page 21

definitions, Sennet definitions, Sentrax definitions, VoE definitions, MX definitions and other
sensor specific definitions

• NMDll.h contains the function prototypes,
• NM.lib is required by the linker, and
• NM.dll is the dynamically linked library.

These files are included as part of the Network Manager Interface Development Components
installation. An application can poll for TCP/IP messages from a Network Manager by periodically
calling NM_GetMessage (recommended once every 10 ms). Alternately, the application can specify a
message (nRxMsg parameter of NM_OpenNetwork) to post to a window (handle specified in
NM_Set_HWND) when a TCP/IP message is received from a Network Manager. The corresponding
message handler function in the application then calls NM_GetMessage when a message is available
to be processed.

The following are the descriptions of the exported functions:

NM_Set_HWND - This function designates the Window that will receive messages. Use when one
window handles all connected networks. Otherwise, see optional parameter in NM_OpenNetwork.

void NM_Set_HWND(HWND hWnd);
hWnd - handle to Window that will receive messages
NM_StatusWindow - This function is used to open and close the Status Information window.

void NM_StatusWindow(BOOL bShow);
bShow - true = Open, false = Close
NM_OpenNetwork - NM_OpenNetwork opens the connection to the Network Manager.

Returned:
HANDLE - Handle to Network Manager

Notes:
Use inet_ntoa to convert in_addr to dotted address ascii string
Use inet_addr to convert dotted address ascii string to in_addr

HANDLE NM_OpenNetwork(in_addr addrNM1, in_addr addrNM2, UINT nUnitId,
UINT nRxMsg = WM_APP, HWND hWnd = NULL);
addrNM1 - IP address of primary network manager
addrNM2 - IP address of alternate network manager
nUnitID - Unit Id of network manager
nRxMsg - Message number to use to signal message received for processing
hWnd - Handle to Window that will receive messages (optional, use if separate Windows

used for each connected network)

page 22 00DA0209-001, Rev AG

NM_OpenNetworkTLS - NM_OpenNetworkTLS opens the connection to the Network Manager.

Returned:
HANDLE - Handle to Network Manager

Notes:
Use inet_ntoa to convert in_addr to dotted address ascii string
Use inet_addr to convert dotted address ascii string to in_addr

There are 2 files required for TLS encryption, a Certificate file and a Key file. The NMS ships with
default versions of both of these files located in a “Certificates” folder in the Network Manager
Installation directory (default file-path C:\Senstar\Network Manager\Certificates). The Certificate file is
named MyCertificate.pem and the Key file is named MyKey.pem. These can be replaced with site
specific Certificate and Key files as long as they have the same names.

HANDLE NM_OpenNetworkTLS(in_addr addrNM1, in_addr addrNM2, UINT nUnitId,
UINT nRxMsg = WM_APP, HWND hWnd = NULL);
addrNM1 - IP address of primary network manager
addrNM2 - IP address of alternate network manager
nUnitID - Unit Id of network manager
nRxMsg - Message number to use to signal message received for processing
hWnd - Handle to Window that will receive messages (optional, use if separate Windows

used for each connected network)
bTLS1 - Boolean to enable TLS on the primary NMS connection
bTLS2 - Boolean to enable TLS on the secondary NMS connection
NM_CloseNetwork - This function closes the connection to the Network Manager.

void NM_CloseNetwork(HANDLE hNetManager);
hNetManager - Handle to Network Manager returned by OpenNetwork
NM_SetStandby - This function sets the active Network Manager to standby, thereby transferring
control to the alternate Network Manager and making it active. This applies only to redundant NM
configurations.
void NM_SetStandby(HANDLE hNetManager)
hNetManager - Handle to Network Manager returned by OpenNetwork
NM_DeviceType - Get the Device type for a specified device.

Returned:
int - Device Type (-1 = No device, 0 = Network dependent device type)

int NM_DeviceType(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_LinkStat - Get the specified Network Manager’s Link State.
Returned:
bool - Status of link to Network Manager (true = connected)

bool NM_LinkStat(HANDLE hNetManager);
hNetManager - Handle to Network Manager returned by OpenNetwork
NM_GetMessage - Get the next message from the specified Network Manager.

Returned:
bool - true = Success

- false = No message available

bool NM_GetMessage(HANDLE hNetManager, int& nSrcAddr, int& nMsgType);
hNetManager - Handle to Network Manager returned by OpenNetwork
nSrcAddr - Storage for source device # from current message
nMsgType - Storage for Message type from current message (see NMTcpip.h for message type

definitions)

00DA0209-001, Rev AH page 23

NM_RqstMate - Send a Mate NM Connection Status request message to a Network Manager.

void NM_RqstMate(HANDLE hNetManager)
hNetManager - Handle to Network Manager returned by OpenNetwork
NM_MateStat - Get the Mate NM Connection Status from the current NM_MT_MATE_STAT
message.
Returned:
bool - false = Unconnected

- true = Connected

bool NM_MateStat(HANDLE hNetManager)
hNetManager - Handle to Network Manager returned by OpenNetwork
NM_RqstDevcSmry - Sends the Device Summary request message to a Network Manager

void NM_RqstDevcSmry(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device Number
NM_GetDevcSmry - Get the Device Summary from the current NM_MT_DEVC_SMRY message.

bool NM_GetDevcSmry(HANDLE hNetManager, bool& bCommFail, bool& bCommFault,
bool& bDiagCrit, bool& bDiagWarn, bool& bEnclTamp);
hNetManager - Handle to Network Manager returned by OpenNetwork
bCommFail - storage for comm. fail summary status
bCommFault - storage for comm. fault summary status
bDiagCrit - storage for critical diagnostic alarm summary status
bDiagWarn - storage for warning diagnostic alarm summary status
bEnclTamper - storage for enclosure tamper alarm status
NM_RqstComm - Send a Communication Status request message to a Network Manager.

void NM_RqstComm(HANDLE hNetManager);
hNetManager - Handle to Network Manager returned by OpenNetwork
NM_GetComm - Get a device’s communication status from the current NM_MT_COMM_STAT
message.

Returned:
bool - true = Success

- false = Failure, invalid for current message type, or device #

bool NM_GetComm(HANDLE hNetManager, int nDevice, bool& bConnected, UINT* uSideFault =
NULL);

hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
bConnected - Storage for Comm status (true = connected)
uSide - Pointer to Storage for side fault status (optional)

 bit 0 = X side, bit 1 = Y side (true = fault)
NM_RqstDiagAlrm - Send the Diagnostic Alarm request message to a Network Manager.

void NM_RqstDiagAlrm(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_RqstSensAlrm - Send Sensor Alarm request for a single alarm point on a device.

void NM_RqstSensAlrm(HANDLE hNetManager, int nDevice, int nPoint);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
nPoint - Alarm point number

page 24 00DA0209-001, Rev AG

NM_RqstSensAlrm - Send the Sensor Alarm request message for all the alarm points on a device.

void NM_RqstSensAlrm(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_RqstFiltAlarm - Send Filtered Sensor Alarm request for a single alarm point on a device.

void NM_RqstSensAlrm(HANDLE hNetManager, int nDevice, int nPoint);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
nPoint - Alarm point number
NM_RqstFiltAlarm - Send Filtered Sensor Alarm request for all the alarm points on a device.

void NM_RqstSensAlrm(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_RqstPreAlarm - Send Sensor Pre-Alarm request for all the alarm points on a device.

void NM_RqstPreAlrm(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_RqstSensTrbl - Sends the Sensor Trouble request message to a Network Manager

void NM_RqstSensTrbl(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device Number
NM_GetAlarm - Get the point status from the Current NM_MT_DIAG_ALARM(S),
NM_MT_SENSOR_ALARM(S), NM_MT_PRE_ALARMS, or NM_MT_SENSOR_TRBL message.

Returned:
bool - true = Success

- false = Failure, invalid for current message type, device type or point #

bool NM_GetAlarm(HANDLE hNetManager, int& nPoint, UINT& uStatus);
hNetManager - Handle to Network Manager returned by OpenNetwork
nPoint - Storage for point number

- filled by function for NM_MT_SENSOR_ALARM messages
- specified for NM_MT_SENSOR_ALARMS messages

uStatus - Storage for point status
 NM_MT_DIAG_ALARM(S): 0 = secure, 1 = alarm
 NM_MT_SENSOR_ALARM(S): 0 = secure, 1 = alarm, 2 = tamper, 3 = alarm &
tamper
NM_MT_PRE_ALARMS: 0 = secure, 1 = pre-alarm
NM_MT_SENSOR_TRBL: 0 = secure, 1 = trouble

NM_GetFiltAlarm - Get the point status from the current NM_MT_FILTER_ALARM or
NM_MT_FILTER_ALARMS message.

Returned:
bool - true = Success

- false = Failure, invalid for current message type, device type or point #

bool NM_GetSensAlarm(HANDLE hNetManager, int& nPoint, UINT& uStatus);
hNetManager - Handle to Network Manager returned by OpenNetwork
nPoint - Storage for point number

- filled by function for NM_MT_FILTER_ALARM messages
- specified for NM_MT_FILTER_ALARMS messages

uStatus - Storage for point status (0 = secure, 1 = alarm, 2 = tamper, 3 = alarm & tamper)

00DA0209-001, Rev AH page 25

NM_GetLocn - Get the alarm location from the current NM_MT_SENSOR_ALARM or
NM_MT_FILTER_ALARM message.

Returned:
bool - true = Success (always fails for non-ranging sensors)

- false = Failure, invalid for current message type, device type or point #

bool NM_GetLocn(HANDLE hNetManager, int& nPoint, int& nLocn, HGLOBAL &hLocn, int nSize);
hNetManager - Handle to Network Manager returned by OpenNetwork
nPoint - Storage for point number

- filled by function for NM_MT_..._ALARM messages
nLocn - Storage for number of alarm locations
hLocn - Storage for handle to alarm locations (delete after use with GlobalFree())

- Storage structure dependent on device type (see NMTcpip.h)
nSize - Storage for size of memory block pointed to by hLocn
NM_SetShunt – Set the shunt state of a sensor point on a device.

void NM_RqstSetShunt(HANDLE hNetManager, int nDevice, int nPoint, BYTE uMask, BYTE uState);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
nPoint - Alarm point number
uMask - Shunts to change (Bit 0: Alarm shunt, Bit 1: Tamper shunt)
uState - State to set (Bit 0: Alarm shunt state, Bit 1: Tamper shunt state. 1 = Shunt active)
NM_SetShunts – Set the shunt state for all sensor points on a device.

void NM_RqstSetShunt(HANDLE hNetManager, int nDevice, int nPoints, BYTE* pState);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
nPoint - Number of Alarm points
uState - Pointer to array of bytes containing shunt states, 2 bits per point

 (Bit 0: Alarm shunt state, Bit 1: Tamper shunt state. 1 = Shunt active)
e.g., Byte 0 bit 0 & 1 (least significant bits) contain shunt state for sensor point 1
e.g., Byte 0 bit 6 & 7 contain shunt state for sensor point 3

NM_RqstShunt – Send Shunt status request for all the alarm points on a device.

void NM_RqstShunt(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_GetShunt – Get the shunt status from the current NM_MT_SHUNTS message.

Returned:
bool - true = success

- false = failure, invalid for current message type, device type or point #

bool NM_GetShunt(HANDLE hNetManager, int& nPoint, UINT& uStatus);
hNetManager - Handle to Network Manager returned by OpenNetwork
nPoint - point number
uStatus - storage for shunt status

 (Bit 0: Alarm shunt state, Bit 1 Tamper shunt state. 1 = Shunt active)
NM_SetControl - Set the state of a control point on a device.

void NM_SetControl(HANDLE hNetManager, int nDevice, int nControl, BYTE bState);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
nControl - Control point number
bState - State to set (Active = 1, Inactive = 0)

page 26 00DA0209-001, Rev AG

NM_SetControls - This function sets all control points for a device.

void NM_SetControls(HANDLE hNetManager, int nDevice, int nControls, BYTE* pState);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
nControls - Number of controls
pState - Pointer to array of bytes containing control states, 1 bit per control (Active = 1,

Inactive = 0)
- e.g. Byte 0 bit 0 (least significant bit) contains state for control 1
- e.g. Byte 0 bit 7 contains state for control 8

NM_RqstControl - Send a Control status request message to a Network Manager.

void NM_RqstControl(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_GetControl - Get the Control status from the current NM_MT_CONTROL or
NM_MT_CONTROLS message.

Returned:
bool - true = Success

- false = Failure, invalid for current message type, device type or point #

bool NM_GetControl(HANDLE hNetManager, int& nControl, UINT& uStatus);
hNetManager - Handle to Network Manager returned by OpenNetwork
nControl - Control number

- filled by function for NM_MT_CONTROL message
- specified for NM_MT_CONTROLS messages

bStatus - Storage for Control status (false = clear, true = active)
NM_RqstAudioFolder - Send Audio Folder request message

void NM_RqstAudioFolder(HANDLE hNetManager, int nChannel);
hNetManager - Handle to Network Manager returned by OpenNetwork
nChannel - Channel number
NM_SetAudioFolder - Send Audio Folder message

void NM_SetAudioFolder(HANDLE hNetManager, int nChannel, wchar_t* pPathname);
hNetManager - Handle to Network Manager returned by OpenNetwork
nChannel - Channel number
pPathname - Pointer to null terminated wide character string containing pathname of folder used

to store audio recordings for specified channel.

Note: String is in little endian Unicode format
NM_GetAudioFolder - Get Audio Folder from current message

Returned:
bool - true = Success

- false = Failure, invalid for current message type

void NM_GetAudioFolder(HANDLE hNetManager, int nChannel, HGLOBAL& hPathname);
hNetManager - Handle to Network Manager returned by OpenNetwork
nChannel - Channel number

- Filled by function for NM_MT_AUDIO_FOLDER message
hPathname - Storage for handle of null terminated wide character string containing pathname of

folder used to store audio recordings for specified channel. (Delete after use with
GlobalFree())

- Filled by function for NM_MT_AUDIO_FOLDER message

 Note: String is in little endian Unicode format

00DA0209-001, Rev AH page 27

NM_GetAudioEvent - Get Audio Event information from current message

Returned:
bool - true = Success

- false = Failure, invalid for current message type

void NM_GetAudioEvent(HANDLE hNetManager, int nChannel, HGLOBAL& hFilename,
HGLOBAL& hDesc);
hNetManager - Handle to Network Manager returned by OpenNetwork
nChannel - Channel number

- Filled by function for NM_MT_AUDIO_EVENT message
hFilename - Storage for handle of null terminated wide character string containing file pathname

of audio recording for specified channel. (Delete after use with GlobalFree())
- Filled by function for NM_MT_AUDIO_EVENT message

hDesc - Storage for handle of null terminated wide character string containing description of
audio recording for specified channel. (Delete after use with GlobalFree())

- Filled by function for NM_MT_AUDIO_EVENT message

Note: Strings are in little endian Unicode format
NM_RqstPointDesc - Send a Point description request message

void NM_RqstPointDesc (HANDLE hNetManager, int nDevice, int nPoint, int nType);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number (n/a for Network descriptions)
nPoint - Point number (n/a for Device descriptions, n/a for Network descriptions)
nType - Description Type (0-Device, 1-Comm Point, 2-Diagnostic Point, 3-Sensor Point,

4-Control Point, 5-Summary Point, 6-Network)
NM_GetPointDesc - Get Point description from current message

Returned:
bool - true = Success

- false = Failure, invalid for current message type

bool NM_RqstPointDesc (HANDLE hNetManager, int& nPoint, int nType, HGLOBAL& hDesc);
hNetManager - Handle to Network Manager returned by OpenNetwork
nPoint - Point number from message (n/a for Device descriptions, n/a for Network

descriptions)
nType - Description Type from message
hDesc - Storage for handle of null terminated wide character string containing description of

device/point. (Delete after use with GlobalFree())

Note: String is in little endian Unicode format
NM_RqstSensInUse - Send the Sensor point in-use request message for the sensor points on a
device.
void NM_RqstSensInUse(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number

NM_RqstSmryInUse - Send the Diagnostic Summary point in-use request message for a device.
void NM_RqstSmryInUse(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number

page 28 00DA0209-001, Rev AG

NM_RqstCtrlInUse - Send the Control point in-use request message for the control points on a
device.
void NM_RqstCtrlInUse(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_GetInUse - Get the point status from the current NM_MT_SENSOR_INUSE or
NM_MT_SMRY_INUSE message

Returned:
bool - true = Success

- false = Failure, invalid for current message type, device type or point #

bool NM_GetAlarm(HANDLE hNetManager, int& nPoint, UINT& uStatus);
hNetManager - Handle to Network Manager returned by OpenNetwork
nPoint - Point number
uStatus - Storage for point status

NM_MT_SENSOR_INUSE
Bit 0: Alarm state supported
Bit 1: Tamper state supported
Bit 2: Pre-alarm state supported
Bit 3: Point in-use

NM_MT_SMRY_INUSE
Bit 0: Point in-use

NM_MT_CONTROL_INUSE
Bit 0: Point available for use

NM_SocketInit - Helper function for when DLL is being used from a secondary thread. Call before
using NM_OpenNetwork.

void NM_SocketInit();
NM_RqstVersion - Send the NMS Version request message

void NM_RqstVersion(HANDLE hNetManager);
hNetManager - Handle to Network Manager returned by OpenNetwork
NM_Version - Send Database Version request message for a device the version and build number
from the current NM_MT_VERSION message

Returned:
bool - true = Success

- false = Failure, invalid for current message type

bool NM_VERSION(HANDLE hNetManager, int& nVer1, int& nVer2, int& nVer3, int& nBuild);
hNetManager - Handle to Network Manager returned by OpenNetwork
nVer1 - Storage for 1st version digit
nVer2 - Storage for 2nd version digit
nVer3 - Storage for 3rd version digit

nBuild - Storage for Build number
NM_RqstDbVersion - Send the Database Version request message for a device

void NM_RqstDbVersion(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number

00DA0209-001, Rev AH page 29

NM_GetDbVersion - Get the Database Version from the current NM_MT_DB_VERSION message

Returned:
bool - true = Success

- false = Failure, invalid for current message type

bool NM_GetDbVersion(HANDLE hNetManager, WORD&wVersion);
hNetManager - Handle to Network Manager returned by Open Network
wVersion - Storage for database version
NM_RqstLRanges - Send the Linear Range request message to a Network Manager

void NM_RqstLRanges(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_GetLRanges - Get the point location information from the NM_MT_LRANGE_ALARMS
message

bool NM_GetLRanges(HANDLE hNetManager, int& nRanges, HGLOBAL &hRanges, int& nSize);
hNetManager- Handle to Network Manager returned by OpenNetwork
hNetManager - Handle to Network Manager returned by OpenNetwork
nRanges - Storage for number of point ranges
hRanges - Storage for handle to point ranges (delete after use with GlobalFree())

- NM_D_LRANGE_POINT structs (see NMTcpip.h)
nSize - Storage for size of memory block pointed to by hRanges
NM_RqstGpsPath - Send the GPS Path request message to a Network Manager

void NM_RqstGpsPath(HANDLE hNetManager, int nDevice);
hNetManager - Handle to Network Manager returned by OpenNetwork
nDevice - Device number
NM_GetGpsPath - Get the path coordinate information from the NM_MT_GPS_PATH_ALARMS
message

bool NM_GetGpsPath(HANDLE hNetManager, int& nPoint, int& nPathPnts, HGLOBAL &hPath, int&
nSize);
hNetManager - Handle to Network Manager returned by OpenNetwork
nPoint - Storage for alarm point number
nPathPnts - Storage for number of path points
hPath - Storage for handle to path points (delete after use with GlobalFree())

- NM_D_GPS_COORD structs (see NMTcpip.h)
nSize - Storage for size of memory block pointed to by hPath
NM_SetTempConfig - Set the state of a control point on a device

void NM_SetTempConfig(HANDLE hNetManager,bool bState int nDevice, int nConfig, int nHours, int
nZone);
hNetManager - Handle to Network Manager returned by OpenNetwork
bState - True applies config for specified duration on specified device, false returns config to

normal before the time is up.
nDevice - Device Number
nControl - Temporary Config Number
nHours - Integer number of hours to apply setting.
nZone - Integer number representing zone to be adjusted.

page 30 00DA0209-001, Rev AG

NM_GetTempConfig - Get the status from the current NM_MT_TEMP_CONFIG
Returned:
Bool -True = Success
 -False = Failure, invalid for current message type, device type or point #

bool NM_GetTempConfig (HANDLE hNetManager, int& nConfig, UINT& uStatus , int &nZone);
hNetManager - Handle to Network Manager returned by OpenNetwork
nConfig - Config number
- filled by function for NM_MT_TEMP_CONFIG message
nHours - Integer Amount of hours temp config is scheduled for.
bStatus - Storage for Config status (false = clear, true = active)
nZone - int representing zone config has changed for.

00DA0209-001, Rev AH page 31

NM DLL Test - NMI test application
The NM DLL Test application (TestDLL) is a windows based Visual C++ MFC application, developed
using Microsoft Visual Studio 2012. It uses the NM DLL functions to interface with a Network Manager.
It is one of the programs used to verify the Network Manager TCP/IP display interface. A second
sample application, NM TCP/IP Test (TestTcpIp) is available to demonstrate using the TCP/IP
messages to interface with a Network Manager. The following screen shot, shows the main window of
the NM DLL Test application. Network Manager connection status and messages are reported in the
display space. Menu items to Pause, Resume and Clear the display space are under the Display
menu. Also, the NM DLL Status Info dialog can be displayed or hidden from the Display menu. Menu
items to connect to a Network Manager and to test available NMI DLL functions are available under
the Misc menu.

To connect to the Network Manager, select Misc > Connect. The following popup appears.:

1. Enter the IP address of the computer running the Network Manager. For redundant Network
Managers, enter the IP address of each computer. The NMI DLL will search for the active Network
Manager using these addresses.

2. Use the Unit ID to select a specific Network Manager.

3. Select Connect and TestDLL uses the NM_OpenNetwork function to make the connection.

Figure 1: NM DLL Test window

Figure 2: NM connection window

Note The Network Manager software must be configured with the IP address of
the computer running the NM DLL Test program, or the connection will be
rejected.

page 32 00DA0209-001, Rev AG

The following menu items on the Misc menu become active when connected to a Network Manager:

Disconnect

The NM_CloseNetwork function is used to disconnect from the Network Manager.

Req Version

The NM_RqstVersion function is used to request the version of the Network Manager. The Network
Manager responds with the NM_MT_VERSION message and TestDLL uses the NM_Version function
to retrieve the version and reports it in the display area.

Mate Status

The NM_RqstMate function is used to request the status of the connection between the active and
standby Network Managers. The Network Manager responds with the NM_MT_MATE _STAT
message and TestDLL uses the NM_MateStat function to retrieve the connection status and reports it
in the display area. A status of unconnected (false) is always returned from a non-redundant Network
Manager.

Standby

The NM_SetStandby function is used to request the active Network Manager to enter standby mode
and transfer control to the alternate Network Manager. The NMI DLL will automatically connect to the
newly active Network Manager and the connection loss and new connection will be reported in the
display area. This only applies to redundant NM configurations and will have no effect if the alternate
NM is not available to go online.

Req Network Desc

The NM_RqstPointDesc function is used to request the description for the network. The Network
Manager responds with the NM_MT_DESC message and TestDLL uses the NM_GetPoint Desc
function to retrieve the description.

Comm Status

Figure 3: NM DLL Test window - Misc menu

00DA0209-001, Rev AH page 33

The NM_RqstComm function is used to request the communication status between the Network
Manager and all of its nodes. The Network Manager responds with the NM_MT_COMM_STAT
message and TestDLL uses the NM_GetComm function to retrieve the communication status for each
device and reports it in the display area.

In addition, the Network Manager sends unsolicited NM_MT_COMM_STATUS messages when a
device’s communication status changes. When this occurs, TestDLL uses NM_GetComm function to
retrieve the device number and communication status and reports it in the display area.

Req Device Status

Req Device Status performs a combined Req Diag Alarms, Req Sensor Alarms, Req Filtered Alarms,
Req Shunts, and Req Controls.

Req Device Desc

The NM_RqstPointDesc function is used to request the description for the device. The Network
Manager responds with the NM_MT_DESC message and TestDLL uses the NM_GetPointDesc
function to retrieve the description.

Req Device Smry In-Use

The NM_RqstSmryInUse function is used to request the summary points in use for the device. The
Network Manager responds with the NM_MT_SMRY_INUSE message and TestDLL uses the
NM_GetInUse function to retrieve the in-use points.

Req Device Summary

The NM_RqstDevcSmry is used to request a summary of the communication and diagnostic status
for a device. The Network Manager responds with the NM_MT_DEVC_SMRY message and TestDLL
uses the NM_GetInUse function to retrieve the in-use points.

In addition, the Network Manager sends unsolicited NM_MT_DEVC_SMRY messages when a
summary status point changes state, which TestDLL reports in the display area.

Req Device Smry Desc

The NM_RqstPointDesc function is used to request the description for the summary point. The
Network Manager responds with the NM_MT_DESC message and TestDLL uses the
NM_GetPointDesc function to retrieve the description.

Req Diag Alarms

The NM_RqstDiagAlrm function is used to request the Diagnostic alarm status for a device. The
Network Manager responds with the NM_MT_DIAG_ALARMS message and TestDLL uses the
NM_GetAlarm function to retrieve the status for a diagnostic alarm point.

In addition, the Network Manager sends unsolicited NM_MT_DIAG_ALARM messages when
diagnostic alarm points change state. When this occurs, TestDLL uses the NM_GetAlarm function to
retrieve the point number and state and reports it in the display area.

Req Diag Desc

The NM_RqstPointDesc function is used to request the description for the diagnostic point. The
Network Manager responds with the NM_MT_Desc message and TestDLL uses the
NM_GetPointDesc function to retrieve the description.

Req Sensor In-Use

The NM_RqstSensInUse function is used to request the Sensor alarm points in use. The Network
Manager responds with the NM_MT_SENSOR_INUSE message and TestDLL uses the
NM_GetInUse function to retrieve the in-use points.

Req Sensor Alarm (single point variant)

page 34 00DA0209-001, Rev AG

The NM_RqstSensAlarm function is used to request the Sensor alarm status for a single sensor
alarm point on a device. The Network Manager responds with the NM_MT_SENSOR_ALARM
message and TestDLL uses the NM_GetAlarm function to retrieve the status for sensor alarm point
and reports it in the display area. For a ranging sensor (e.g., OmniTrax) TestDll uses the NM_GetLocn
function to retrieve location information for the alarm and also reports the information in the display
area. See NMTcpip.h for how the device type’s location information is provided.

In addition, the Network Manager sends unsolicited NM_MT_SENSOR_ALARM messages when a
sensor alarm point changes state, which TestDLL reports in the display area

Req Sensor Alarms (all points variant)

The NM_RqstSensAlrm function is used to request the status for all sensor alarm points on a device.
The Network Manager responds with the NM_MT_SENSOR_ALARMS message and TestDLL uses
the NM_GetAlarm function to retrieve the status for each sensor alarm point and reports them in the
display area.

Req Filter Alarm (single point variant)

The NM_RqstFiltAlarm function is used to request the Filtered alarm status for a single sensor alarm
point on a device. The Network Manager responds with the NM_MT_FILTER_ALARM message and
the TestDLL uses the NM_GetFiltAlarm function to retrieve the status for the sensor alarm point and
reports it in the display area. For a ranging sensor (e.g., OmniTrax) TestDll uses the NM_GetLocn
function to retrieve location information for the alarm, and also reports the information in the display
area. See NMTcpip.h for details about how the device type’s location information is provided.

In addition, the Network Manager sends unsolicited NM_MT_FILTER_ALARM messages when a
sensor alarm point changes state and the new state is not shunted. The Network Manager also sends
NM_MT_FILTER_ALARM messages in response to changes to the sensor point’s shunt state using
the NM_SetShunt function (NM_MT_SHUNT message). The TestDLL reports the contents of these
messages in the display area.

Req Filter Alarms (all points variant)

The NM_RqstFiltAlarm is used to request the Filtered alarm status for all sensor alarm points on a
device. The Network Manager responds with the NM_MT_FILTER_ALARMS message and the
TestDLL uses the GetFiltAlarm function to retrieve the status for each sensor alarm point and reports
them in the display area.

In addition the Network Manager sends NM_MT_FILTER_ALARMS messages in response to
changes to a device’s shunt status using the NM_SetShunts function (NM_MT_SHUNTS message).
TestDLL reports the contents of these messages in the display area.

Req Pre Alarms

The NM_RqstPreAlarm function is used to request the pre-alarm status for all sensor alarm points on
a device. The Network Manager responds with the NM_MT_PRE_ALARMS message and the
TestDLL uses the NM_GetAlarm function to retrieve the status for each sensor alarm point and
reports them in the display area.

In addition, the Network Manager sends unsolicited NM_MT_PRE_ALARMS messages when a
sensor alarm point pre-alarm changes state, which TestDLL reports in the display area.

Req Sensor Trouble

The NM_RqstSensTrbl is used to request which sensor alarms whose alarm reporting capability
might be compromised due to active Comm. fail, Device mismatch or Diagnostic alarms. The Network
Manager responds with the NM_MT_SENSOR_TRBL message and TestDLL uses the NM_GetAlarm
function to retrieve the status for each sensor alarm point and reports them in the display area.

00DA0209-001, Rev AH page 35

In addition, the Network Manager sends unsolicited NM_MT_SENSOR_TRBL messages when a
sensor alarm point trouble status changes state, which TestDLL reports in the display area.

Set Shunt

The NM_SetShunt function is used to set the shunt state for a sensor alarm point on a device. If the
message results in a change of state, the Network Manager responds with a
NM_MT_FILTER_ALARM message containing the resulting filtered alarm state. TestDLL uses the
NM_GetFiltAlarm function to retrieve the status for the sensor alarm point and reports it in the display
area.

Set Shunts

The NM_SetShunts function is used to set the shunt state for all sensor alarm points on a device. If
the message results in a change of state of a sensor alarm point, the Network Manager responds with
a NM_MT_FILTER_ALARMS message containing the filtered alarm state of all sensor alarm points on
the device. TestDLL uses the NM_GetFiltAlarm function to retrieve the status for the sensor alarm
point and reports it in the display area.

Req Shunts

The NM_RqstShunt function is used to request the shunt status for all sensor alarm points on a
device. The Network Manager responds with a NM_MT_SHUNTS message and TestDLL uses the
GetShunt function to retrieve the shunt status for the sensor alarm points and reports them in the
display area.

Req Alarm Desc

The NM_RqstPointDesc function is used to request the description for the alarm. The Network
Manager responds with the NM_MT_Desc message and TestDLL uses the NM_GetPoint Desc
function to retrieve the description.

Req Alarm Ranges

The NM_RqstLRanges function is used to request the linear ranges for a device’s alarm points. The
Network Manager responds with the NM_MT_LRANGE_ALARMS message and TestDLL uses the
NM_GetLRanges function to retrieve the alarm point ranges.

Req Alarm Paths

The NM_RqstGpsPath function is used to request the GPS path for a device’s alarm points. The
Network Manager responds with the NM_MT_GPS_PATH_ALARMS messages (one per alarm point
with a path defined) and TestDLL uses the NM_GetGpsPath function to retrieve the path co-ordinates.

Req Control In-Use

The NM_RqstCtrlInUse function is used to request the Control points available for use. The Network
Manager responds with the NM_MT_CONTROL_INUSE message and TestDLL uses the
NM_GetInUse function to retrieve the in-use points.

Set Control

The NM_SetControl function is used to set the state for a control point on a device. If the message
results in a change of state of the control point, the Network Manager responds with a
NM_MT_CONTROL message containing the updated state. TestDLL uses the NM_GetControl
function to retrieve the point number and its status and reports it in the display area.

In addition, the Network Manager sends unsolicited NM_MT_CONTROL messages when control
points change state due to other Display or UCM applications. Silver Network devices will also send
control point state changes for points under local control of the device.

page 36 00DA0209-001, Rev AG

Set Controls

The NM_SetControls function is used to set the state for all the control points on a device. If the
message results in a change of state of a control point, the Network Manager responds with a
NM_MT_CONTROLS message containing all control point states for the device. TestDLL uses the
NM_GetControl function to retrieve the statuses and reports them in the display area.

Req Controls

The NM_RqstControl function is used to request the status for all the control points on a device. The
Network Manager responds with a NM_MT_CONTROLS message and TestDLL uses the
NM_GetControl function to retrieve the status for the control points and reports them in the display
area.

Req Control Desc

The NM_RqstPointDesc function is used to request the description for the control. The Network
Manager responds with the NM_MT_Desc message and TestDLL uses the NM_GetPoint Desc
function to retrieve the description.

Set Audio Folder

The NM_SetAudioFolder function is used to specify the folder to be used to store audio recordings for
an audio channel.

Req Audio Folder

The NM_RqstAudioFolder function is used to request the folder used by an audio channel for
recordings. The Network Manager responds with an NM_MT_AUDIO_FOLDER message containing
the folder name and TestDLL uses the GetAudioFolder function and reports it in the display area.
(Applies only to VoE Network Manager.)

In addition, the VoE NM sends unsolicited NM_MT_AUDIO_EVENT messages when an audio
recording ends. TestDLL uses the NM_GetAudioEvent function to retrieve the audio channel, the
pathname of the recording and the description of the event.

00DA0209-001, Rev AH page 37

Silver point assignments
The Silver Network defines valid device addresses ranging from 1 to 60.
#define NM_AG_MIN_ADDR 1
#define NM_AG_MAX_ADDR 60
Silver Device defines:
#define NM_AG_OTRX 0X201 // OmniTrax
#define NM_AG_XFLD 0X203 // XField
#define NM_AG_XFLD_LT 0X20A // XField LT
#define NM_AG_IO16 0X204 // 16I/16O
#define NM_AG_4100 0X206 // MPS-4100
#define NM_AG_FLXPS 0X207 // FlexPS
#define NM_AG_UWAVE 0X208 // UltraWave
#define NM_AG_FLXZN 0X20F // FlexZone-60
#define NM_AG_FLXZ20 0X20B // FlexZone-20
#define NM_AG_FLXZ4 0X20D // FlexZone-4
#define NM_AG_AMUX 0X20E // Audio MUX (virtual device)
#define NM_AG_ULIO 0X209 // UltraLink I/O
#define NM_AG_RBX510 0X210 // rBOX510 (embedded controller for NMS)
#define NM_AG_ALE 0X211 // Alarm Logic Engine (virtual device)
#define NM_AG_LM100 0X212 // Senstar LM100
#define NM_AG_FP400 0X213 // FiberPatrol FP400
#define NM_AG_BR100 0X214 // BR100
#define NM_AG_E5000 0x215 // E5000 Physical Security Appliance
The following tables include the point definitions for Silver compatible devices:
OmniTrax input point mapping

Point Description Point Description

Diagnostic alarms

1 Enclosure tamper 9 2 V 5 / 1 V 2 rail fault

2 Program flash error 10 Battery fault

3 RAM error 11 Input power fail

4 Processor boot fail Cable faults

5 Option card fail 12 Side A cable supervision

6 8 V rail fault 13 Side B cable supervision

7 3 V 3 rail fault 14 Side A interference (jam)

8 +5 V / - 5 V rail fault 15 Side B interference (jam)

Sensor alarms

1 AUX input 1 (bit 0 alarm, bit 1
supervision) 7 Option card input Opt5 (bit 0 alarm, bit

1 supervision)

2 AUX input 2 (bit 0 alarm, bit 1
supervision) 8 Option card input Opt6 (bit 0 alarm, bit

1 supervision)

3 Option card input Opt1 (bit 0 alarm, bit
1 supervision) 9 Option card input Opt7 (bit 0 alarm, bit

1 supervision)

4 Option card input Opt2 (bit 0 alarm, bit
1 supervision) 10 Option card input Opt8 (bit 0 alarm, bit

1 supervision)

page 38 00DA0209-001, Rev AG

5 Option card input Opt3 (bit 0 alarm, bit
1 supervision) 11 to 60 Cable zone #n (bit 0 alarm, bit 1

unused)

6 Option card input Opt4 (bit 0 alarm, bit
1 supervision)

OmniTrax output point mapping (controls)

Point Description Point Description

1 Processor relay 1 7 Option card relay Opt3

2 Processor relay 2 8 Option card relay Opt4

3 Processor relay 3 9 Option card relay Opt5

4 Processor relay 4 10 Option card relay Opt6

5 Option card relay Opt1 11 Option card relay Opt7

6 Option card relay Opt2 12 Option card relay Opt8

XField/XField LT input point mapping

Point Description Point Description

Diagnostic alarms

1 Enclosure tamper 10 Battery fault

2 Program flash error 11 Input power fail

3 RAM error 12 Side A supervision

4 Processor boot fail 13 Side B supervision

5 Option card fail 14 Side A spoof

6 8 V rail fault 15 Side B spoof

7 3 V 3 rail fault 16 Jam

8 +5 V / - 5 V rail fault 17 Side A service required

9 2 V 5 / 1 V 2 rail fault 18 Side B service required

Sensor alarms

1 AUX input 1 - (bit 0 alarm, bit 1
supervision) 7 Option card input Opt5 - (bit 0 alarm,

bit 1 supervision)

2 AUX input 2 - (bit 0 alarm, bit 1
supervision) 8 Option card input Opt6 - (bit 0 alarm,

bit 1 supervision)

3 Option card input Opt1 - (bit 0 alarm,
bit 1 supervision) 9 Option card input Opt7 - (bit 0 alarm,

bit 1 supervision)

4 Option card input Opt2 - (bit 0 alarm,
bit 1 supervision) 10 Option card input Opt8 - (bit 0 alarm,

bit 1 supervision)

5 Option card input Opt3 - (bit 0 alarm,
bit 1 supervision) 11 Side A alarm (bit 0 alarm, bit 1

unused)

6 Option card input Opt4 - (bit 0 alarm,
bit 1 supervision) 12 Side B alarm (bit 0 alarm, bit 1

unused)

XField/XField LT output point mapping (controls)

Point Description Point Description

1 Processor relay 1 8 Option card relay Opt4

2 Processor relay 2 9 Option card relay Opt5

OmniTrax input point mapping

Point Description Point Description

00DA0209-001, Rev AH page 39

3 Processor relay 3 10 Option card relay Opt6

4 Processor relay 4 11 Option card relay Opt7

5 Option card relay Opt1 12 Option card relay Opt8

6 Option card relay Opt2 13 Side A self-test

7 Option card relay Opt3 14 Side B self-test

16I/16O input point mapping

Point Description Point Description

Diagnostic alarms

1 Enclosure tamper 5 3V3 Rail Fault

2 Program flash error 6 5V Rail Fault

3 RAM error 7 Battery fault

4 8V Rail Fault 8 Input power fail

Sensor alarms

1 - 16 processor inputs 1 - 16 (bit 0: Alarm; bit 1: Tamper)

16I/16O output point mapping (controls)

Points Description

1 - 16 processor relays 1 - 16

MPS-4100 input point mapping

Point Description Point Description

Sensor alarms

1 Microwave 1 (bit 0: Alarm, bit 1:
tamper) 2 Microwave 2 (bit 0: Alarm, bit 1:

tamper)

MPS-4100 output point mapping (controls)

Points Description Points Description

1 Audio Select 1 3 Self-Test 1-2 + Self-Test
LED 1

2 Audio Select 2 4 Self-Test LED 2

FlexPS input point mapping

Point Description Point Description

Diagnostic alarms

1 Enclosure tamper 5 3V3 Rail Fault

2 Program flash error 6 Battery fault

3 RAM error 7 Input power fail

4 8V Rail Fault

Sensor alarms

1 - 2 processor Aux inputs 1 - 2 (bit 0: Alarm; bit 1: Tamper)

3 - 4 Side A/B (bit 0: Alarm; bit 1: Tamper)

XField/XField LT output point mapping (controls)

Point Description Point Description

page 40 00DA0209-001, Rev AG

FlexPS output point mapping (controls)

Points Description

1 - 4 processor relays 1 - 4

5 - 6 audio select Side A/B

7 - 8 self-test Side A/B

UltraWave input point mapping
Point Description Point Description
Diagnostic alarms (receiver)
1 Enclosure tamper 6 5V5 Rail fault
2 Program flash error 7 3V3 Rail fault
3 RAM error 8 5V Rail fault
4 Transmitter link fault 9 Input power fail
5 Transmitter mismatch
Diagnostic alarms (transmitter)
10 Enclosure tamper 13 5V5 Rail fault
11 Program flash error 14 3V3 Rail fault
12 Ram error 15 5V Rail fault

16 Input power fail
Sensor alarms
1 Receiver Aux input (bit 0: Alarm; bit 1: Tamper)
2 Microwave (bit 0: Alarm; bit 1: unused)

UltraWave output point mapping (controls)

Points Description

1 - 2 Receiver relays 1 - 2

3 self-test

FlexZone-60 input point mapping

Point Description Point Description

Diagnostic alarms

1 Enclosure tamper 16 Processor offline

2 Program flash error 17 Gate Module Rcvr Fault

3 RAM error 18 Gate Module Rcvr Interference

4 Processor boot fail 19 Gate Module 1 Comm Fail

5 8V Rail fault 20 Gate Module 1 Encosure tamper

6 3V Rail fault 21 Gate Module 1 Program flash error

7 1V8 Rail fault 22 Gate Module 1 I2C Bus fault

8 1V2 Rail fault 23 Gate Module 1 2V7 Rail fault

9 Input power fail 24 Gate Module 1 Low power

7 1V8 Rail fault 25 - 30 Gate Module 2 (see Gate Module 1)

8 1V2 Rail fault 31 - 36 Gate Module 3 (see Gate Module 1)

9 Input power fail 37 - 42 Gate Module 4 (see Gate Module 1)

43 Option card fail

Cable faults

00DA0209-001, Rev AH page 41

10 Side A power fault 13 Side B supervision

11 Side B power fault 14 Side A interference

12 Side A supervision 15 Side B interference

Sensor alarms

1 - 2 Processor Aux inputs 1 - 2 (bit 0: Alarm; bit 1: Tamper)

3 - 62 Cable Zone n (bit 0: Alarm; bit 1: unused)

Gate Modules 1 - 4 (bit 0: Alarm; bit 1: Tamper)
NOTE: Alarm and Tamper states are not mutually exclusive for points 63, 65, 67 & 69

63 GM1 Gate status 67 GM3 Gate status

64 GM1 Aux input 68 GM3 Aux input

65 GM2 Gate status 69 GM4 Gate status

66 GM2 Aux input 70 GM4 Aux input

71 - 74 Option card inputs Opt 1 - Opt 4 (bit 0: Alarm; bit 1: Tamper)

FlexZone-60 output point mapping (controls)

Points Description

1 - 4 Processor relays 1 - 4

5 - 8 Option card relays Opt 1 - Opt 4

FlexZone-20 input point mapping
Point Description Point Description
Diagnostic alarms
1 Enclosure tamper 16 Processor offline
2 Program flash error 17 Gate Module Rcvr Fault
3 RAM error 18 Gate Module Rcvr Interference
4 Processor boot fail 19 Gate Module 1 Comm Fail
5 8V Rail fault 20 Gate Module 1 Encosure tamper
6 3V Rail fault 21 Gate Module 1 Program flash error
7 1V8 Rail fault 22 Gate Module 1 I2C Bus fault
8 1V2 Rail fault 23 Gate Module 1 2V7 Rail fault
9 Input power fail 24 Gate Module 1 Low power
7 1V8 Rail fault 25 - 30 Gate Module 2 (see Gate Module 1)
8 1V2 Rail fault 31 - 36 Gate Module 3 (see Gate Module 1)
9 Input power fail 37 - 42 Gate Module 4 (see Gate Module 1)

43 Option card fail
Cable faults
10 Side A power fault 13 Side B supervision
11 Side B power fault 14 Side A interference
12 Side A supervision 15 Side B interference
Sensor alarms
1 - 2 Processor Aux inputs 1 - 2 (bit 0: Alarm; bit 1: Tamper)
3 - 22 Cable Zone n (bit 0: Alarm; bit 1: unused)

FlexZone-60 input point mapping

Point Description Point Description

page 42 00DA0209-001, Rev AG

Gate Modules 1 - 4 (bit 0: Alarm; bit 1: Tamper)
NOTE: Alarm and Tamper states are not mutually exclusive for points 23, 25, 27 & 29
23 GM1 Gate status 27 GM3 Gate status
24 GM1 Aux input 28 GM3 Aux input
25 GM2 Gate status 29 GM4 Gate status
26 GM2 Aux input 30 GM4 Aux input
31 - 34 Option card inputs Opt 1 - Opt 4 (bit 0: Alarm; bit 1: Tamper)

FlexZone-20 output point mapping (controls)
Points Description
1 - 4 Processor relays 1 - 4
5 - 8 Option card relays Opt 1 - Opt 4

FlexZone-4 input point mapping

Point Description Point Description

Diagnostic alarms

1 Enclosure tamper 16 Processor offline

2 Program flash error 17 Gate Module Rcvr Fault

3 RAM error 18 Gate Module Rcvr Interference

4 Processor boot fail 19 Gate Module 1 Comm Fail

5 8V Rail fault 20 Gate Module 1 Encosure tamper

6 3V Rail fault 21 Gate Module 1 Program flash error

7 1V8 Rail fault 22 Gate Module 1 I2C Bus fault

8 1V2 Rail fault 23 Gate Module 1 2V7 Rail fault

9 Input power fail 24 Gate Module 1 Low power

7 1V8 Rail fault 25 - 30 Gate Module 2 (see Gate Module 1)

8 1V2 Rail fault 31 - 36 Gate Module 3 (see Gate Module 1)

9 Input power fail 37 - 42 Gate Module 4 (see Gate Module 1)

43 Option card fail

Cable faults

10 Side A power fault 13 Side B supervision

11 Side B power fault 14 Side A interference

12 Side A supervision 15 Side B interference

Sensor alarms

1 - 2 Processor Aux inputs 1 - 2 (bit 0: Alarm; bit 1: Tamper)

3 - 6 Cable Zone n (bit 0: Alarm; bit 1: Unused)

Gate Modules 1 - 4 (bit 0: Alarm; bit 1: Tamper)
NOTE: Alarm and Tamper states are not mutually exclusive for points 7, 9, 11 & 13

7 GM1 Gate status 11 GM3 Gate status

8 GM1 Aux input 12 GM3 Aux input

9 GM2 Gate status 13 GM4 Gate status

10 GM2 Aux input 14 GM4 Aux input

FlexZone-20 input point mapping
Point Description Point Description

00DA0209-001, Rev AH page 43

15 - 18 Option card inputs Opt 1 - Opt 4 (bit 0: Alarm; bit 1: Tamper)

FlexZone-4 output point mapping (controls)

Points Description

1 - 4 Processor relays 1 - 4

5 - 8 Option card relays Opt 1 - Opt 4

Audio MUX-60 output point mapping (controls)

Points Description

1 - 100 Audio select

UltraLink input point mapping

Point Description Point Description

Diagnostic alarms (Processor card)

1 Program flash error 3 5V5 Rail fault

2 RAM error 4 3V3 Rail fault

Diagnostic alarms (expansion card 1)

5 Card fail 8 RAM error

6 Card mismatch 9 3V3 Rail fault

7 Program flash error

Expansion card 2 (10 - 14) see expansion card 1 description

Expansion card 3 (15 - 19) see expansion card 1 description

Expansion card 4 (20 - 24) see expansion card 1 description

Expansion card 5 (25 - 29) see expansion card 1 description

Expansion card 6 (30 - 34) see expansion card 1 description

Expansion card 7 (35 - 39) see expansion card 1 description

Expansion card 8 (40 - 44) see expansion card 1 description

Sensor alarms

1 - 8 processor inputs 1 - 8 (bit 0: Alarm; bit 1: Tamper)

9 - 40 expansion card 1 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

41 - 72 expansion card 2 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

73 - 104 expansion card 3 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

105 - 136 expansion card 4 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

137 - 168 expansion card 5 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

169 - 200 expansion card 6 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

201 - 232 expansion card 7 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

233 - 264 expansion card 8 inputs 1 - 32 (bit 0: Alarm; bit 1: Tamper)

UltraLink output point mapping (controls)

Points Description

1 - 8 Processor relays 1 - 8

9 - 40 expansion card 1 relays/open collector outputs 1 - 32

41 - 72 expansion card 2 relays/open collector outputs 1 - 32

FlexZone-4 input point mapping

Point Description Point Description

page 44 00DA0209-001, Rev AG

73 - 104 expansion card 3 relays/open collector outputs 1 - 32

105 - 136 expansion card 4 relays/open collector outputs 1 - 32

137 - 168 expansion card 5 relays/open collector outputs 1 - 32

169 - 200 expansion card 6 relays/open collector outputs 1 - 32

201 - 232 expansion card 7 relays/open collector outputs 1 - 32

233 - 264 expansion card 8 relays/open collector outputs 1 - 32

rBOX510 embedded controller input point mapping

Point Description Point Description

Diagnostic alarms

None

Sensor alarms

1 - 8 DIO inputs 1 - 8

rBOX510 embedded controller output point mapping (controls)

Points Description

1 - 8 DIO outputs 1 - 8

Alarm Logic Engine input point mapping (virtual device)

Point Description

Diagnostic alarms

None

Sensor alarms

1 - 400 Logic Elements (bit 0: Alarm, bit 1: tamper) NOTE: Alarm and tamper states are not mutually
exclusive.

Alarm Logic Engine output point mapping (controls) (virtual device)

Points Description

1 - 400 Fanout points

LM100 input point mapping
Point Description Point Description
Diagnostic alarms
1 Enclosure tamper 6 8V Rail fault
2 Program flash error 7 3V Rail fault
3 RAM error 8 3V9 Rail fault
4 Head Net fail 9 Input power fail
5 Option card fail
10, 12 ... 108 Zone 1 - 50 Critical Head Diagnostics 11, 13 ... 109 Zone 1-50 Warning Head Diagnostics
110 Gate Module Receiver fault 116 Gate Module 1 2V7 Rail fault
111 Gate Module Receiver interference 117 Gate Module 1 Low power
112 Gate Module 1 Comm fail 118 - 123 Gate Module 2 (see Gate Module 1)
113 Gate Module 1 Enclosure tamper 124 - 129 Gate Module 3 (see Gate Module 1)
114 Gate Module 1 Program Flash error 130 - 135 Gate Module 4 (see Gate Module 1)

UltraLink output point mapping (controls)

Points Description

00DA0209-001, Rev AH page 45

115 Gate Module 1 I2C Bus fault
Sensor alarms
1 - 10 Gateway Aux inputs 1 - 10 (bit 0: Alarm; bit 1: Tamper)
11 - 14 Option card inputs Opt 1 - Opt 4 (bit 0: Alarm; bit 1: Tamper)
15 - 64 Zone n alarms (bit 0: Alarm; bit 1: Tamper)

NOTE: Alarm and Tamper states are not mutually exclusive
Gate Modules 1 - 4 (bit 0: Alarm; bit 1: Tamper)
NOTE: Alarm and Tamper states are not mutually exclusive for Gate Status
65 GM1 Gate status 69 GM3 Gate status
66 GM1 Aux input 70 GM3 Aux input
67 GM2 Gate status 71 GM4 Gate status
68 GM2 Aux input 72 GM4 Aux input

73 - 122 Zone n Aux alarms (bit 0: Alarm; bit 1: Tamper)
NOTE: Alarm and Tamper states are not mutually exclusive

LM100 output point mapping (controls)
Points Description
1 - 10 Gateway relays 1 - 10
11 - 14 Option card relays Opt 1 - Opt 4
15 - 64 Zone n lights - activate at lighting level 1
65 - 114 Zone n lights - activate at lighting level 2
115 - 164 Zone n lights - activate at alarm lighting level
165 - 214 Zone n lights - force OFF (override any other lighting triggers)

FP400 input point mapping

Point Description Point Description

Diagnostic alarms

1 Program flash error 5 6V5 rail fault

2 RAM error 6 3V3 rail fault

3 Laser fault 7 Input power fail

4 Option card fail

Sensor alarms

1 - 2 Processor AUX inputs 1 - 2 (bit 0: Alarm; bit 1: Tamper)

2 Option card inputs Opt 1 - Opt 4 (bit 0: Alarm; bit 1: Tamper)

3 Zone 1 - 4 (bit 0: Alarm; bit 1: Tamper)

FP400 output point mapping (controls)

Point Description

1 - 6 Processor relays 1 - 6

7 - 10 Option card relays 1 - 4

LM100 input point mapping
Point Description Point Description

page 46 00DA0209-001, Rev AG

BR100 input point mapping

Point Description Point Description

Diagnostic alarms

1 Enclosure Tamper 7 3V3 regulator fault

2 Program flash error 8 Ethernet regulator fault

3 Flash error 9 RF regulator fault

4 Synth Lock fail 10 RS422 A regulator fault

5 I2C bus fault 11 RS422 B regulator fault

6 3V6 rail fault 12 Input power fail

Sensor alarms

1 Processor AUX input 1 (bit 0: Alarm; bit 1: Tamper)

2 Microwave, Monostatic & Bistatic RX modes only (bit 0: Alarm; bit 1: unused)

BR100 output point mapping (controls)

Point Description

1 - 2 Processor relays 1 - 2

3 Self-test

E5000 input point mapping

Point Description

Diagnostic alarms

None

Sensor alarms

1 - 8 GPIO Inputs 1 - 8

E5000 output point mapping (controls)

Points Description

1 - 8 GPIO Outputs 1 - 8

00DA0209-001, Rev AH page 47

FiberPatrol point assignments
FiberPatrol defines valid device addresses ranging from 1 to 10.

#define NM_FP_MIN_ADDR 1

#define NM_FP_MAX_ADDR 10

FiberPatrol Device defines:

#define NM_FP_SU 0X700 // FiberPatrol Sensor Unit

#define NM_FP_RSU 0X701 // FiberPatrol Redundant Sensor Unit (virtual device)

The FiberPatrol Redundant Sensor Unit (RSU) is a virtual device which combines the Sensor (Zone)
alarms reported by two identical FiberPatrol Sensor Units and reports the alarms as a single SU. The
RSU is configured by designating two Sensor Units with one as the Primary Sensor Unit (PSU) and the
second as the Alternate Sensor Unit (ASU). The two SUs and the virtual RSU must be defined in the
same FiberPatrol Network Manager service (i.e., 2 SUs and 1 RSU defined on 1 network manager).
The RSU reports a Sensor alarm from either the PSU or ASU depending on the point's current critical
trouble status reported by the PSU and ASU. A critical trouble status is reported for a zone if there is a
communication or diagnostic alarm reported that could block the detection or reporting of a Sensor
alarm. For example, if the PSU reports a critical trouble condition in Zone 3, the RSU will use the Zone
3 sensor alarm data from the ASU.

The following table outlines which source's Sensor Alarm status is reported by the RSU depending on
the reported supervision and trouble states of the PSU and ASU.

The RSU does not combine and report the Device Summary, Communication and Diagnostic alarms of
the PSU and ASU. Monitoring of device summary (NM_MT_DEVC_SMRY), communication
(NM_MT_COMM_STAT) and diagnostic alarms (NM_MT_DIAG_ALARM(S)) should be done via the 2
physical Sensor Units (PSU and ASU).

For Sensor Units designated as the Primary or Alternate source for an RSU:

1. Alarm reporting via NM_MT_SENSOR_ALARM(S) and NM_MT_FILTER_ALARM(S) is
suppressed as the alarms are reported by the RSU. If an alarm point status is queried the NMS will
respond with an inactive status.

2. The Sensor In-use message (NM_MT_SENSOR_INUSE) will report all points as not in-use. The
associated RSU will report the points as in-use.

3. Primary and Alternate Sensor Units must be configured so that zones are physically aligned
(identical zone layouts).

PSU Status ASU Status RSU Zone Alarm RSU Zone Trouble

OK OK PSU status PSU status (i.e., OK)
OK Trouble PSU status PSU status (i.e., OK)
Trouble OK ASU status ASU status (i.e., OK)
Trouble Trouble PSU status PSU status

page 48 00DA0209-001, Rev AG

 The following tables include the point definitions for FiberPatrol compatible devices:

FiberPatrol SU input point mapping

Point Description

Diagnostic Alarms

1 Processor Fault

2 COM Fault (Processor to Controller Communication)

3 Transmitter Fault (Controller)

4 Receiver Fault (Controller)

5 ADC Fault (Processor Signal Digitizer)

6 Environmental Fault (Ambient Temperature)

7 Sensor 1 Fault (Channel 1 Signal)

8 Sensor 2 Fault (Channel 2 Signal)

9 Optical Power Fault (Low in both Channels)

10 Fiber Cut

Sensor Alarms

1 - 1440 Zones 1 - 1440 (bit 0: Alarm, bit 1: cut)

FiberPatrol RSU input point mapping (virtual device)

Point Description

Diagnostic Alarms (see physical SU assigned)

None

Sensor Alarms

1 - 1440 Zones 1 - 1440 (bit 0: Alarm, bit 1: cut)

00DA0209-001, Rev AH page 49

CCC point assignments
The CCC network defines valid device addresses ranging from 0 to 127 (0 to 120 when using “Boris”
Card).

#define NM_C3_MIN_ADDR 0

#define NM_C3_MAX_ADDR 127

CCC Device defines:

#define NM_C3_FOST 0X600 // Innofence Fiber Optic Sensor Transducer

#define NM_C3_GPRU 0X601 // General Purpose Reporting Unit

#define NM_C3_SPRU 0X602 // DTR Sensor Post Reporting Unit

#define NM_C3_VPRU 0X603 // Barricade Vibration Processing Reporting Unit

#define NM_C3_YAEL 0X604 // YAEL-16 Piezo Taut Wire Processor

The following tables include the point definitions for CCC compatible devices:

FOST input point mapping

Point Description

Diagnostic Alarms

1 Enclosure tamper

Sensor Alarms

1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: unused)

3 - 4 Fiber 1 - 2 (bit 0: Alarm, bit 1: Tamper)

FOST output point mapping (controls)

Point Description

1 Self Test

GPRU input point mapping

Point Description

Sensor Alarms

1 - 8 Inputs 1 - 8 (bit 0: Alarm, bit 1: unused)

GPRU output point mapping (controls)

Point Description

1 - 9 Relays 1 - 9

10 Self Test

SPRU input point mapping

Point Description

Diagnostic Alarms

1 Enclosure Tamper

Sensor Alarms

1 Taut-wire group 1 lower (bit 0: Alarm, bit 1: unused)

2 Taut-wire group 2 lower (bit 0: Alarm, bit 1: unused)

3 Taut-wire group 3 lower (bit 0: Alarm, bit 1: unused)

page 50 00DA0209-001, Rev AG

4 Taut-wire group 4 lower (bit 0: Alarm, bit 1: unused)

5 Taut-wire group 5 lower (bit 0: Alarm, bit 1: unused)

6 Taut-wire group 1 upper (bit 0: Alarm, bit 1: unused)

SPRU output point mapping (controls)

Point Description

1 Self Test

VPRU input point mapping

Point Description

Diagnostic Alarms

1 Enclosure Tamper

2 Input Power Fault

Sensor Alarms

1 Sensor Line 1 (bit 0: Alarm, bit 1: Tamper)

2 Sensor Line 2 (bit 0: Alarm, bit 1: Tamper)

3 Sensor Line 3 (bit 0: Alarm, bit 1: Tamper)

4 Sensor Line 4 (bit 0: Alarm, bit 1: Tamper)

VPRU output point mapping (controls)

Point Description

1 - 2 Relays 1 - 2

3 Self Test

YAEL input point mapping
Point Description
Diagnostic Alarms
1 Enclosure Tamper
2 Input Power Fault
3 Detector Current Fault
4 Detector Amplifier Alarm
Sensor alarms
1 Fence (bit 0: Alarm, bit 1: Tamper)

YAEL output point mapping (controls)

Point Description

1 - 3 TTL Output 1 - 3

4 Self Test

SPRU input point mapping

Point Description

00DA0209-001, Rev AH page 51

Crossfire point assignments
The Crossfire network defines valid device addresses ranging from 0 to 127.

#define NM_XF_MIN_ADDR 0

#define NM_XF_MAX_ADDR 127

Crossfire Device defines:

#define NM_XF_410 0X001 // PLC-410

#define NM_XF_420 0X002 // PLC-420

#define NM_XF_430 0X003 // PLC-430

#define NM_XF_4100 0X004 // MPS-4100 (Intelli-WAVE)

#define NM_XF_IFLX 0X005 // Intelli-FLEX

#define NM_XF_IFLD 0X006 // Intelli-FIELD

The following tables include the point definitions for Crossfire compatible devices:

PLC-410 input point mapping

Point Description

Sensor Alarms

1 - 64 Inputs 1 - 64 (bit 0: Alarm)

PLC-410 output point mapping (controls)

Point Description

1 - 128 Controls 1 - 128

PLC-420 input point mapping

Point Description

Sensor Alarms

1 - 16 Card 1 IO-101/102 inputs 1 - 16 (bit 0: Alarm, bit 1: unused)

17 - 32
Card 1 IO-101 inputs 17 - 32 (bit 0: Alarm, bit 1: unused)

 IO-102 inputs 1 - 16 (bit 0: Tamper, bit 1: unused)

33 - 48 Card 2 IO-101/102 inputs 1 - 16 (bit 0: Alarm, bit 1: unused)

49 - 64
Card 2 IO-101 inputs 17 - 32 (bit 0: Alarm, bit 1: unused)

 IO-102 inputs 1 - 16 (bit 0: Tamper, bit 1: unused)

PLC-420 output point mapping (controls)

Point Description

1 - 16
Card 1 IO-201 outputs 1 - 16

Card 1A IO-202 outputs 1 - 16

17 - 32
Card 1 IO-201 outputs 17 - 32

Card 1B IO-202 outputs 1 - 16

33 - 48
Card 2 IO-201 outputs 1 - 16

Card 2A IO-202 outputs 1 - 16

49 - 64
Card 2 IO-201 outputs 17 - 32

Card 2B IO-202 outputs 1 - 16

page 52 00DA0209-001, Rev AG

PLC-430 input point mapping

Point Description

Sensor Alarms

1 - 8 Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper)

PLC-430 output point mapping (controls)

Point Description

1 - 8 Outputs 1 - 8

MPS-4100 input point mapping

Point Description

Sensor Alarms

1 - 2 Microwave 1 - 2 (bit 0: Alarm, bit 1: Tamper)

MPS-4100 output point mapping (controls)

Point Description

1 Audio Select 1 (Audio 2 LED)

2 Audio Select 2 (Audio 1 LED)

3 Self-Test 1 & 2 (Self-Test LED 1)

4 Self-Test LED 2

Intelli-FLEX input point mapping
Point Description
Diagnostic Alarms
1 Enclosure Tamper
2 Low Power Fail
Sensor alarms
1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper)
3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper)

Intelli-FLEX output point mapping (controls)
Point Description
1 - 2 Relays 1 - 2
3 - 4 Audio Select Side A/B
5 - 6 Self-Test Side A/B

Intelli-FIELD input point mapping
Point Description
Diagnostic Alarms
1 Enclosure Tamper
Sensor Alarms
1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper)
3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper)

Intelli-FIELD output point mapping (controls)
Point Description
1 - 6 Relays 1 - 6 (labelled Suprv A/B, Alarm A/B, Enclosure, Power Fail)
7 - 8 Self-Test Side A/B

00DA0209-001, Rev AH page 53

Sennet point assignments
The Sennet Network defines valid device addresses ranging from 0 to 62, with address 0 reserved for
the Network Controller:

#define NM_SN_MIN_ADDR 0

#define NM_SN_MAX_ADDR 62

Sennet Device defines:

#define NM_SN_TU 0X100 // TU

#define NM_SN_LTU 0X101 // LTU

#define NM_SN_SM 0X103 // Perimitrax SM

#define NM_SN_IF 0X105 // IntelliFlex

#define NM_SN_NC 0X106 // Network Controller

The following tables include the point definitions for Sennet compatible devices:

Network Controller input point mapping
Point Description
Diagnostic alarms
1 ROM Error
2 RAM Error
3 Enclosure Tamper
4 AC Power Fail

Transponder Unit input point mapping
Point Description
Diagnostic alarms
1 ROM Error
2 RAM Error
3 Enclosure Tamper
4 AC Power Fail
Sensor alarms
1 - 16 Inputs 1 - 16 (bit 0: Alarm, bit 1: Tamper)

Transponder Unit output point mapping (controls)
Point Description
1 - 8 Relays 1 - 8

Large Transponder Unit input point mapping
Point Description
Diagnostic alarms
1 ROM Error
2 RAM Error
3 Enclosure Tamper
Sensor alarms
1 - 256 Inputs 1 - 256 (bit 0: Alarm, bit 1: Tamper)

Large Transponder Unit output point mapping (controls)

page 54 00DA0209-001, Rev AG

Point Description
1 - 256 Relays 1 - 256

Perimitrax Sensor Module input point mapping
Point Description
Diagnostic alarms
1 ROM Error 5 RX Cable Fault
2 RAM Error 6 TX Cable Fault
3 Enclosure Tamper 7 Voltage Fault
4 EEPROM Error 8 Temperature Fault
Sensor alarms
1 - 8 Aux Inputs 1 - 8 (bit 0: Alarm, bit 1: Tamper)
9 - 10 Side A/B (bit 0: Alarm, bit 1: Unused)

Perimitrax Sensor Module output point mapping (controls)
Point Description
1 - 4 Relays 1 - 4
5 - 6 Self-Test Side A/B

Intelli-FLEX input point mapping
Point Description
Diagnostic alarms
1 RAM Error
2 Enclosure Tamper
3 Low Power Fail
Sensor alarms
1 - 2 Aux Inputs 1 - 2 (bit 0: Alarm, bit 1: Tamper)
3 - 4 Side A/B (bit 0: Alarm, bit 1: Tamper)

Intelli-FLEX output point mapping (controls)
Point Description
1 - 2 Relays 1 - 2
3 - 4 Audio Select Side A/B
5 - 6 Self-Test Side A/B

00DA0209-001, Rev AH page 55

Sentrax point assignments
The Sentrax Network defines valid device addresses ranging from 0 to 16, with address 0 reserved for
the Sentrax Control Module:

#define NM_SX_MIN_ADDR 0

#define NM_SX_MAX_ADDR 16

Sentrax Device defines:

#define NM_SX_CM 0X500 // Control Module

#define NM_SX_LTM 0X501 // Transceiver Module

The following tables include the point definitions for Sentrax compatible devices:

Control Module input point mapping
Point Description Point Description
Diagnostic alarms
1 RAM Error 6 TX Cable Fault
2 ROM Error 7 RX Cable Fault
3 Enclosure Tamper 8 TX Cable Short
4 TM Power OFF 9 RX Cable short
5 CM Offline 10 TX Cable Open

11 RX Cable Open

Control Module output point mapping (controls)
Point Description Point Description
1 - 32 Option Board Relays 1 - 32 33 Global Self-Test

Transceiver Module input point mapping
Point Description
Diagnostic alarms
1 Enclosure Tamper
Sensor alarms
Note: Aux input Alarm and Tamper states are not mutually exclusive

1 Aux input Side A:X
(bit 0: Alarm, bit 1: Tamper) 4 Aux input Side B:Y

(bit 0: Alarm, bit 1: Tamper)

2 Aux input Side B:X
(bit 0: Alarm, bit 1: Tamper) 5 - 6 Side A/B

(bit 0: Alarm, bit 1: Unused)

3 Aux input Side A:Y
(bit 0: Alarm, bit 1: Tamper)

Controls
1 - 4 Aux Outputs 1 - 4

page 56 00DA0209-001, Rev AG

Voice over Ethernet point assignments
The VoE Network defines valid device addresses ranging from 1 to 200.

#define NM_VO_MIN_ADDR 1

#define NM_VO_MAX_ADDR 200

VoE Device defines:

#define NM_VO_IPCC 0X400 // IP Cell Call

The following tables include the point definitions for VoE compatible devices:
IPCC input point mapping

Point Description

Diagnostic alarms

1 3V3 rail fault

2 1V8 rail fault

3 5V rail fault

4 2V5 rail fault

Sensor alarms

1 - 4 Processor inputs 1 - 4 (bit 0: Alarm, bit 1: Tamper)

IPCC output point mapping (controls)

Point Description

1 - 4 Processor relays 1 - 4 (UCM programmed state for relays)

5 - 8 Processor relays 1 - 4 (latch relay ON overriding programmed state)

9 Audio Channel 1 Ctrl IPCC Slct

10 Audio Channel 1 Dest IPCC Slct

11 Audio Channel 2 Ctrl IPCC Slct

12 Audio Channel 2 Dest IPCC Slct

13 Audio Channel 3 Ctrl IPCC Slct

14 Audio Channel 3 Dest IPCC Slct

15 Audio Channel 4 Ctrl IPCC Slct

16 Audio Channel 4 Dest IPCC Slct

17 Audio Channel 5 Ctrl IPCC Slct

18 Audio Channel 5 Dest IPCC Slct

00DA0209-001, Rev AH page 57

MX point assignments
The MX network defines valid device addresses ranging from 0 to 120, with address 0 reserved for the
MX-5000/MX-7000 Controller.

#define NM_MX_MIN_ADDR 0

#define NM_MX_MAX_ADDR 120

MX Device defines:

#define NM_MX_5000 0X300 // MX-5000

#define NM_MX_7000 0X300 // MX-7000

#define NM_MX_ZN 0X301 // Zone

The following tables include the point definitions for MX compatible devices:

MX-5000/MX-7000 input point mapping

Point Description Point Description

Diagnostic Alarms

1 Fiber Fault 3 Input Power Fault

2 Battery Fault

MX-5000/MX-7000 output point mapping (controls)

Point Description

1 Global Self-Test (Note: Test takes approximately 15 seconds to execute. Only one Global or
Zone test may run at one time.)

Zone input point mapping

Point Description

Diagnostic Alarms

1 Trouble

Sensor Alarms

1 Status (bit 0: alarm, bit 1: tamper)

Zone output point mapping (controls)

Points Description

1 Audio Select (Note: Audio may only be selected one zone at a time.)

2 Alarm Access (Note: Invalid if alarm condition active.)

3 VPRU output point mapping (controls)

page 58 00DA0209-001, Rev AG

Starcom point assignments
Note: To date all implementations of Starcom have only supported device # 00 (device controller).

#define NM_SC_MIN_ADDR 0

#define NM_SC_MAX_ADDR 0

Starcom Device defines:

#define NM_SC_DEV 0X900 // Starcom Device

The following tables include the point definitions for Starcom devices:

Starcom input point mapping
Point Description Point Description
Diagnostic alarms
1 ROM Error 4 Device Fault
2 RAM Error 5 Power Fault
3 Data Error
Sensor Alarms
1 - 1024 Input Points 0 - 1023 (bit 0: Alarm, bit 1: Tamper)

Starcom output point mapping (controls)

Point Description

1 - 1024 Output Points 0 - 1023

00DA0209-001, Rev AH page 59

Recommended NMI Message Use Summary
The following table is a summary of the recommended and most commonly used messages defined in
the Network Manager Interface document. Refer to the appropriate section in the Network Manager
Interface application note for complete message details.

The and  symbols in the description column indicate information flow to () and from () the
Network Manager.

Message Description Usage
NM_MT_LOOPBACK • Originator sends 2 data bytes.

• Recipient replies with inverted value
of bytes.

Can be used as a heartbeat to confirm the
sanity of the recipient.

NM_MT_DEVC_TYPE => Query NM for the device type of 1 or
all sensors.
<= NM Reply identifies the device type
and the number of diagnostic alarms,
sensor alarms and control points
supported by the device.

Used to identify the sensors that are being
monitored by a Network Manager

NM_MT_DEVC_SMRY => Query NM for a summary of comm
and diagnostic alarms for a sensor.
<= NM Reply identifies a critical and
warning level report of communication
and self diagnostic alarms for each
sensor.
• NM sends unsolicited in the event of

a status change.

Recommend using this message in place of
the NM_MT_COMM_STAT,
NM_MT_DIAG_ALARM and
NM_MT_DIAG_ALARMS messages.
It provides an operator appropriate
summary of the detailed alarms reported in
those messages.
Currently 5 summary alarm points are
defined.

NM_MT_SMRY_INUSE => Request NM for which summary
points are valid for a sensor.
<= NM Reply identifies the summary
points supported by a sensor.

Not all summary bits are valid for all sensor
types. This can be used to identify the
applicable summary bits in a system
configuration dialog.

NM_MT_SENSOR_ALARM => Query NM for raw status of a sensor’s
alarm point.
<= NM Reply provides intrusion and
tamper status for an alarm point. For
sensors supporting target location, the
target(s) location is appended.
• NM sends unsolicited in the event of

a status change.
• NM can be configured to send

unsolicited message if target location
changes.

Provides raw status of an alarm point
Monitor for the alarm point’s changes of
states.
If using NM alarm shunt capability, use the
NM_MT_FILTER_ALARM message.

NM_MT_SENSOR_ALARMS => Query NM for raw status of all of a
sensor’s alarm points.
<= NM Reply provides intrusion and
supervision status for all of the sensor’s
alarm points.

Useful for initial poll of the current raw
status of a sensor’s alarm points.
If using NM alarm shunt capability use the
NM_MT_FILTER_ALARMS message.

page 60 00DA0209-001, Rev AG

NM_MT_SHUNT => Request NM to set the shunt status of
a sensor alarm point.
=> Query NM for the shunt status of a
sensor alarm point.
<= Reply NM provides shunt status of
alarm point.

Used to shunt an alarm point so the NM will
not report the point’s alarms.
Usually done to suppress intrusion alarm
reporting due to authorized activity (e.g.,
landscape maintenance).
Tamper alarms are not usually shunted as
they are considered to be the result of
malicious action rather than authorized
activity.

NM_MT_FILTER_ALARM => Query NM for filtered status of a
sensor’s alarm point.
<= NM Reply provides intrusion and
tamper status for alarm point. For
sensors supporting target location, the
location(s) is appended.
• NM sends unsolicited in the event of

a status change.
• Changing state of associated shunt

state can result in a status change if
the raw alarm state is active (cause
unsolicited message).

• NM can be configured to send
unsolicited message if the target
location changes.

Provides the status of alarm points filtered
by shunt state.
Monitor for alarm point state changes.

NM_MT_FILTER_ALARMS => Query NM for filtered status of all of a
sensor’s alarm points.
<= NM Reply provides intrusion and
supervision status for all of the sensor’s
alarm points.

Useful for initial poll of current filtered status
of a sensor’s alarm points.

NM_MT_SENSOR_TRBL => Query NM for the trouble state of all of
a sensor’s alarm points.
<= NM Reply provides trouble status for
all the sensor’s alarm points.
• NM sends unsolicited in event of

status change.

A critical communication or diagnostic
alarm on a sensor may affect the ability of
the sensor to report alarms for one or more
alarm points. An active trouble state for an
alarm point indicates the point’s operation
may be compromised.

NM_MT_PRE_ALARMS => Query NM for the pre-alarm state of
all of a sensor’s alarm points.
<= NM Reply provides pre-alarm status
for all of the sensor’s alarm points.
• NM sends unsolicited in the event of

a status change.

Some sensors can report a pre-alarm state
before an alarm is reported. This can be
used to direct PTZ cameras to enable pre-
alarm video recording before an alarm is
reported.

NM_MT_SENSOR_INUSE => Request NM which sensor alarms are
valid for a sensor.
<= NM Reply identifies the sensor alarm
points that a sensor currently supports.

Not all sensor alarm points support all alarm
states (intrusion, tamper and pre-alarm). In
addition, some points may not be applicable
due to missing optional hardware or the
sensor’s configuration settings.
The information in this message can be
used to identify the available points and
alarm states in a system configuration
dialog.

Senstar, OmniTrax, XField, FlexPS, FlexZone, UltraWave, FiberPatrol, Perimitrax, Sennet, Sentrax, and the Senstar logo are registered trademarks, and Silver Network, UltraLink,
Senstar LM100 MultiSensor and Intelli-FLEX are trademarks of Senstar Corporation. Product names and Company names included in this document are used only for identification
purposes, and are the property of, and may be trademarks of their respective owners. Copyright © 2005. All rights reserved. The information in this document is subject to change
without notice.

00DA0209-001, Rev AH page 61

website: www.senstar.com email: info@senstar.com

NM_MT_CONTROL => Request NM to set the active/inactive
state of a sensor’s control point.
=> Query NM for state of a sensor’s
control point.
<= NM Reply reports current state of
sensor output.
• NM sends unsolicited in the event of

a status change.

Used to set the status of a sensor’s output.
A control point could be a physical output
like a relay, or it could trigger a sensor
alarm self-test.

NM_MT_CONTROLS => Request NM to set or clear multiple
sensor control points.
=> Query NM for state of all of a sensor’s
controls.
<= NM Reply provides status for all of the
sensor’s controls.

Useful for initial poll of the current status of
a sensor’s control points or for setting the
initial state for all of the sensor controls.

NM_MT_CONTROL_INUSE => Request NM which sensor control
points are valid for a sensor.
<= NM Reply identifies the sensor control
points that a sensor currently supports.

Some control points may not be currently
applicable due to missing optional hardware
or the sensor’s configuration settings.
The information in this message can be
used to identify the available controls in a
system configuration dialog.

NM_MT_VERSION => Request current NM software version.
>= NM Reply contains software version.

Useful for checking if the NM supports a
feature introduced at a particular software
version.

NM_MT_DB_VERSION => Request the database version of a
device
<= NM Reply contains database version
• NM sends unsolicited in the event of

a detected version change.

If SMS makes use of point In-use
information and wants to dynamically
respond to changes made to a sensor; this
can be used to detect when such changes
occur.

NM_MT_DESC => Request NM name for a device or
summary/sensor/control point.
<= NM Reply contains Unicode
description for the requested device/
point.

Useful for retrieving description for use in a
system configuration dialog.

NM_MT_MATE_STAT => Request the status of the standby
NM.
<= NM Reply contains the status of the
standby NM.
• NM sends unsolicited in the event of

a status change.

Used in redundant NM situations to monitor
the availability of the backup NM.

NM_MT_STANDBY => Request Active NM transfer control to
Standby NM.

Used to swap which NM is active in a
redundant situation.

NM_MT_LRANGE_ALARMS => Request the linear distance linear
range coverage of the device’s alarm
points.
<= NM Reply contains the linear ranges
of configured ranging points.

Used to identify which points support
ranging and the extent of linear locations
that can be expected.

NM_MT_GPS_PATH_ALARMS => Request the GPS path points of the
device’s alarm points.
<= NM Reply contains the GPS path
points of configured ranging points.

Used to identify which points support GPS
alarm location and the path along which the
GPS location will be reported.

	Introduction
	Network Manager Simulators

	Network Manager SDK installation
	IP address configuration
	Network Manager Interface TCP/IP
	Conventions:
	NMI message summary
	NM_MT_NULL
	NM_MT_LOOPBACK
	NM_MT_VERSION
	NM_MT_DEVC_TYPE
	NM_MT_DB_VERSION
	NM_MT_DIAG_ALARM
	NM_MT_DIAG_ALARMS
	NM_MT_SENSOR_ALARM
	NM_MT_SENSOR_ALARMS
	NM_MT_FILTER_ALARM
	NM_MT_FILTER_ALARMS
	NM_MT_SHUNT
	NM_MT_SHUNTS
	NM_MT_PRE_ALARMS
	NM_MT_CONTROL
	NM_MT_CONTROLS
	NM_MT_STANDBY
	NM_MT_MATE_STAT
	NM_MT_DESC
	NM_MT_DEVC_SMRY
	NM_MT_SENSOR_TRBL
	NM_MT_SENSOR_INUSE
	NM_MT_SMRY_INUSE
	NM_MT_CONTROL_INUSE
	NM_MT_LRANGE_ALARMS
	NM_MT_GPS_PATH_ALARMS
	NM_MT_SET_CONFIG

	VoE NM only
	NM_MT_AUDIO_FOLDER
	NM_MT_AUDIO_EVENT

	NMI DLL
	NM DLL Test - NMI test application
	Silver point assignments
	FiberPatrol point assignments
	CCC point assignments
	Crossfire point assignments
	Sennet point assignments
	Sentrax point assignments
	Voice over Ethernet point assignments
	MX point assignments
	Starcom point assignments
	Recommended NMI Message Use Summary

